Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a1, author = {B. Sh. Kulpeshov and S. V. Sudoplatov}, title = {Spherical orders, properties and countable spectra of their theories}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {588--599}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/} }
TY - JOUR AU - B. Sh. Kulpeshov AU - S. V. Sudoplatov TI - Spherical orders, properties and countable spectra of their theories JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 588 EP - 599 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/ LA - en ID - SEMR_2023_20_2_a1 ER -
%0 Journal Article %A B. Sh. Kulpeshov %A S. V. Sudoplatov %T Spherical orders, properties and countable spectra of their theories %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 588-599 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/ %G en %F SEMR_2023_20_2_a1
B. Sh. Kulpeshov; S. V. Sudoplatov. Spherical orders, properties and countable spectra of their theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 588-599. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/
[1] S.V. Sudoplatov, “Arities and aritizabilities of first-order theories”, Sib. Èlectron. Math. Izv., 19:2 (2022), 889–901 | MR
[2] S.V. Sudoplatov, “Almost $n$-ary and almost $n$-aritizable theories”, Sib. Èlectron. Math. Izv., 20:1 (2023), 132–139 | MR
[3] B.Sh. Kulpeshov, H.D. Macpherson, “Minimality conditions on circularly ordered structures”, Math. Log. Q., 51:4 (2005), 377–399 | DOI | MR | Zbl
[4] A.B. Altaeva, B.Sh. Kulpeshov, “On almost binary weakly circularly minimal structures”, Bulletin of Karaganda University, Mathematics, 78:2 (2015), 74–82 | MR
[5] B.Sh. Kulpeshov, “On almost binarity in weakly circularly minimal structures”, Eurasian Math. J., 7:2 (2016), 38–49 | MR | Zbl
[6] A.L. Semenov, “Finiteness conditions for algebras of relations”, Proc. Steklov Inst. Math., 242 (2003), 92–96 | MR | Zbl
[7] S.V. Sudoplatov, Classification of countable models of complete theories, NSTU, Novosibirsk, 2018
[8] E.A. Palyutin, J. Saffe, S.S. Starchenko, “Models of superstable Horn theories”, Algebra Logic, 24:3 (1985), 171–210 | DOI | MR | Zbl
[9] P.S. Modenov, A.S. Parkhomenko, Geometric transformations, Izdat. Mosk. Univ., M., 1961 | MR | Zbl
[10] N.N. Stepanov, Spherical trigonometry, ONTI NKTP USSR, M., 1948 | Zbl
[11] S.V. Sudoplatov, Group polygonometries, NSTU, 2013
[12] Yu.L. Ershov, E.A. Palyutin, Mathematical logic, Nauka, M., 2011 | MR | Zbl
[13] R. Vaught, “Denumerable models of complete theories”, Infinitistic Methods, Proc. Symp. Foundations Math. (Warsaw 1959), Pergamon, London, 1961, 303–321 | MR | Zbl
[14] T.S. Millar, “Decidable Ehrenfeucht theories”, Proc. Sympos. Pure Math., 42 (1985), 311–321 | DOI | MR | Zbl
[15] L.L. Mayer, “Vaught's conjecture for $o$-minimal theories”, J. Symb. Log., 53:1 (1988), 146–159 | DOI | MR | Zbl
[16] A. Pillay, C. Steinhorn, “Definable sets in ordered structures. I”, Trans. Am. Math. Soc., 295:2 (1986), 565–592 | DOI | MR | Zbl
[17] B.Sh. Kulpeshov, S.V. Sudoplatov, “Distributions of countable models of quite $o$-minimal Ehrenfeucht theories”, Eurasian Math. J., 11:3 (2020), 66–78 | DOI | MR | Zbl
[18] S.V. Sudoplatov, “Distributions of countable models of disjoint unions of Ehrenfeucht theories”, Lobachevskii J. Math., 42:1 (2021), 195–205 | DOI | MR | Zbl