Spherical orders, properties and countable spectra of their theories
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 588-599
Voir la notice de l'article provenant de la source Math-Net.Ru
We study semantic and syntactic properties of spherical orders and their elementary theories, including finite and dense orders and their theories. It is shown that theories of dense $n$-spherical orders are countably categorical and decidable. The values for spectra of countable models of unary expansions of $n$-spherical theories are described. The Vaught conjecture is confirmed for countable constant expansions of dense $n$-spherical theories.
Keywords:
spherical order, elementary theory, dense spherical order, countably categorical theory, spectrum of countable models, Vaught conjecture.
@article{SEMR_2023_20_2_a1,
author = {B. Sh. Kulpeshov and S. V. Sudoplatov},
title = {Spherical orders, properties and countable spectra of their theories},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {588--599},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/}
}
TY - JOUR AU - B. Sh. Kulpeshov AU - S. V. Sudoplatov TI - Spherical orders, properties and countable spectra of their theories JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 588 EP - 599 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/ LA - en ID - SEMR_2023_20_2_a1 ER -
%0 Journal Article %A B. Sh. Kulpeshov %A S. V. Sudoplatov %T Spherical orders, properties and countable spectra of their theories %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 588-599 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/ %G en %F SEMR_2023_20_2_a1
B. Sh. Kulpeshov; S. V. Sudoplatov. Spherical orders, properties and countable spectra of their theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 588-599. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/