Spherical orders, properties and countable spectra of their theories
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 588-599 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study semantic and syntactic properties of spherical orders and their elementary theories, including finite and dense orders and their theories. It is shown that theories of dense $n$-spherical orders are countably categorical and decidable. The values for spectra of countable models of unary expansions of $n$-spherical theories are described. The Vaught conjecture is confirmed for countable constant expansions of dense $n$-spherical theories.
Keywords: spherical order, elementary theory, dense spherical order, countably categorical theory, spectrum of countable models, Vaught conjecture.
@article{SEMR_2023_20_2_a1,
     author = {B. Sh. Kulpeshov and S. V. Sudoplatov},
     title = {Spherical orders, properties and countable spectra of their theories},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {588--599},
     year = {2023},
     volume = {20},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
AU  - S. V. Sudoplatov
TI  - Spherical orders, properties and countable spectra of their theories
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 588
EP  - 599
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/
LA  - en
ID  - SEMR_2023_20_2_a1
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%A S. V. Sudoplatov
%T Spherical orders, properties and countable spectra of their theories
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 588-599
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/
%G en
%F SEMR_2023_20_2_a1
B. Sh. Kulpeshov; S. V. Sudoplatov. Spherical orders, properties and countable spectra of their theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 588-599. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/

[1] S.V. Sudoplatov, “Arities and aritizabilities of first-order theories”, Sib. Èlectron. Math. Izv., 19:2 (2022), 889–901 | MR

[2] S.V. Sudoplatov, “Almost $n$-ary and almost $n$-aritizable theories”, Sib. Èlectron. Math. Izv., 20:1 (2023), 132–139 | MR

[3] B.Sh. Kulpeshov, H.D. Macpherson, “Minimality conditions on circularly ordered structures”, Math. Log. Q., 51:4 (2005), 377–399 | DOI | MR | Zbl

[4] A.B. Altaeva, B.Sh. Kulpeshov, “On almost binary weakly circularly minimal structures”, Bulletin of Karaganda University, Mathematics, 78:2 (2015), 74–82 | MR

[5] B.Sh. Kulpeshov, “On almost binarity in weakly circularly minimal structures”, Eurasian Math. J., 7:2 (2016), 38–49 | MR | Zbl

[6] A.L. Semenov, “Finiteness conditions for algebras of relations”, Proc. Steklov Inst. Math., 242 (2003), 92–96 | MR | Zbl

[7] S.V. Sudoplatov, Classification of countable models of complete theories, NSTU, Novosibirsk, 2018

[8] E.A. Palyutin, J. Saffe, S.S. Starchenko, “Models of superstable Horn theories”, Algebra Logic, 24:3 (1985), 171–210 | DOI | MR | Zbl

[9] P.S. Modenov, A.S. Parkhomenko, Geometric transformations, Izdat. Mosk. Univ., M., 1961 | MR | Zbl

[10] N.N. Stepanov, Spherical trigonometry, ONTI NKTP USSR, M., 1948 | Zbl

[11] S.V. Sudoplatov, Group polygonometries, NSTU, 2013

[12] Yu.L. Ershov, E.A. Palyutin, Mathematical logic, Nauka, M., 2011 | MR | Zbl

[13] R. Vaught, “Denumerable models of complete theories”, Infinitistic Methods, Proc. Symp. Foundations Math. (Warsaw 1959), Pergamon, London, 1961, 303–321 | MR | Zbl

[14] T.S. Millar, “Decidable Ehrenfeucht theories”, Proc. Sympos. Pure Math., 42 (1985), 311–321 | DOI | MR | Zbl

[15] L.L. Mayer, “Vaught's conjecture for $o$-minimal theories”, J. Symb. Log., 53:1 (1988), 146–159 | DOI | MR | Zbl

[16] A. Pillay, C. Steinhorn, “Definable sets in ordered structures. I”, Trans. Am. Math. Soc., 295:2 (1986), 565–592 | DOI | MR | Zbl

[17] B.Sh. Kulpeshov, S.V. Sudoplatov, “Distributions of countable models of quite $o$-minimal Ehrenfeucht theories”, Eurasian Math. J., 11:3 (2020), 66–78 | DOI | MR | Zbl

[18] S.V. Sudoplatov, “Distributions of countable models of disjoint unions of Ehrenfeucht theories”, Lobachevskii J. Math., 42:1 (2021), 195–205 | DOI | MR | Zbl