Spherical orders, properties and countable spectra of their theories
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 588-599

Voir la notice de l'article provenant de la source Math-Net.Ru

We study semantic and syntactic properties of spherical orders and their elementary theories, including finite and dense orders and their theories. It is shown that theories of dense $n$-spherical orders are countably categorical and decidable. The values for spectra of countable models of unary expansions of $n$-spherical theories are described. The Vaught conjecture is confirmed for countable constant expansions of dense $n$-spherical theories.
Keywords: spherical order, elementary theory, dense spherical order, countably categorical theory, spectrum of countable models, Vaught conjecture.
@article{SEMR_2023_20_2_a1,
     author = {B. Sh. Kulpeshov and S. V. Sudoplatov},
     title = {Spherical orders, properties and countable spectra of their theories},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {588--599},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
AU  - S. V. Sudoplatov
TI  - Spherical orders, properties and countable spectra of their theories
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 588
EP  - 599
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/
LA  - en
ID  - SEMR_2023_20_2_a1
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%A S. V. Sudoplatov
%T Spherical orders, properties and countable spectra of their theories
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 588-599
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/
%G en
%F SEMR_2023_20_2_a1
B. Sh. Kulpeshov; S. V. Sudoplatov. Spherical orders, properties and countable spectra of their theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 588-599. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a1/