Almost $n$-ary and almost $n$-aritizable theories
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 132-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study possibilities for almost $n$-ary and $n$-aritizable theories. Their dynamics both in general case, for $\omega$-categorical theories, and with respect to operations for theories are described.
Keywords: elementary theory, almost $n$-ary theory, almost $n$-aritizable theory.
@article{SEMR_2023_20_1_a4,
     author = {S. V. Sudoplatov},
     title = {Almost $n$-ary and almost $n$-aritizable theories},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {132--139},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a4/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - Almost $n$-ary and almost $n$-aritizable theories
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 132
EP  - 139
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a4/
LA  - en
ID  - SEMR_2023_20_1_a4
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T Almost $n$-ary and almost $n$-aritizable theories
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 132-139
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a4/
%G en
%F SEMR_2023_20_1_a4
S. V. Sudoplatov. Almost $n$-ary and almost $n$-aritizable theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 132-139. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a4/

[1] S.V. Sudoplatov, “Arities and aritizabilities of first-order theories”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 889–901 | MR

[2] E.A. Palyutin, J. Saffe, S.S. Starchenko, “Models of superstable Horn theories”, Algebra Logic, 24:3 (1985), 171–210 | DOI | MR | Zbl

[3] S.V. Sudoplatov, Classification of Countable Models of Complete Theories, NSTU, Novosibirsk, 2018

[4] B.Sh. Kulpeshov, H.D. Macpherson, “Minimality conditions on circularly ordered structures”, Math. Log. Q, 51:4 (2005), 377–399 | DOI | MR | Zbl

[5] A.B. Altaeva, B.Sh. Kulpeshov, “On almost binary weakly circularly minimal structures”, Bulletin of Karaganda University, Mathematics, 78:2 (2015), 74–82 | MR

[6] B.Sh. Kulpeshov, “On almost binarity in weakly circularly minimal structures”, Eurasian Math. J., 7:2 (2016), 38–49 | MR | Zbl

[7] D.Yu. Emel'yanov, B.Sh. Kulpeshov, S.V. Sudoplatov, “Algebras of binary formulas for compositions of theories”, Algebra Logic, 59:4 (2020), 295–312 | DOI | MR | Zbl

[8] R.E. Woodrow, Theories with a finite number of countable models and a small language, Ph. D. Thesis, Simon Fraser University, 1976 | MR