Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a4, author = {S. V. Sudoplatov}, title = {Almost $n$-ary and almost $n$-aritizable theories}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {132--139}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a4/} }
S. V. Sudoplatov. Almost $n$-ary and almost $n$-aritizable theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 132-139. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a4/
[1] S.V. Sudoplatov, “Arities and aritizabilities of first-order theories”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 889–901 | MR
[2] E.A. Palyutin, J. Saffe, S.S. Starchenko, “Models of superstable Horn theories”, Algebra Logic, 24:3 (1985), 171–210 | DOI | MR | Zbl
[3] S.V. Sudoplatov, Classification of Countable Models of Complete Theories, NSTU, Novosibirsk, 2018
[4] B.Sh. Kulpeshov, H.D. Macpherson, “Minimality conditions on circularly ordered structures”, Math. Log. Q, 51:4 (2005), 377–399 | DOI | MR | Zbl
[5] A.B. Altaeva, B.Sh. Kulpeshov, “On almost binary weakly circularly minimal structures”, Bulletin of Karaganda University, Mathematics, 78:2 (2015), 74–82 | MR
[6] B.Sh. Kulpeshov, “On almost binarity in weakly circularly minimal structures”, Eurasian Math. J., 7:2 (2016), 38–49 | MR | Zbl
[7] D.Yu. Emel'yanov, B.Sh. Kulpeshov, S.V. Sudoplatov, “Algebras of binary formulas for compositions of theories”, Algebra Logic, 59:4 (2020), 295–312 | DOI | MR | Zbl
[8] R.E. Woodrow, Theories with a finite number of countable models and a small language, Ph. D. Thesis, Simon Fraser University, 1976 | MR