On the preservation of the Wiener index of cubic graphs upon vertex removal
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 285-292

Voir la notice de l'article provenant de la source Math-Net.Ru

The Wiener index, $W(G)$, is the sum of distances between all vertices of a connected graph $G$. In 2018, Majstorović, Knor and Škrekovski posed the problem of finding $r$-regular graphs except cycle $C_{11}$ having at least one vertex $v$ with property $W(G)=W(G-v)$. An infinite family of cubic graphs with four such vertices is constructed.
Keywords: Wiener index, Šoltés problem.
Mots-clés : distance invariant
@article{SEMR_2023_20_1_a21,
     author = {A. A. Dobrynin},
     title = {On the preservation of the {Wiener} index of cubic graphs upon vertex removal},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {285--292},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a21/}
}
TY  - JOUR
AU  - A. A. Dobrynin
TI  - On the preservation of the Wiener index of cubic graphs upon vertex removal
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 285
EP  - 292
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a21/
LA  - en
ID  - SEMR_2023_20_1_a21
ER  - 
%0 Journal Article
%A A. A. Dobrynin
%T On the preservation of the Wiener index of cubic graphs upon vertex removal
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 285-292
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a21/
%G en
%F SEMR_2023_20_1_a21
A. A. Dobrynin. On the preservation of the Wiener index of cubic graphs upon vertex removal. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 285-292. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a21/