On the preservation of the Wiener index of cubic graphs upon vertex removal
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 285-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Wiener index, $W(G)$, is the sum of distances between all vertices of a connected graph $G$. In 2018, Majstorović, Knor and Škrekovski posed the problem of finding $r$-regular graphs except cycle $C_{11}$ having at least one vertex $v$ with property $W(G)=W(G-v)$. An infinite family of cubic graphs with four such vertices is constructed.
Keywords: Wiener index, Šoltés problem.
Mots-clés : distance invariant
@article{SEMR_2023_20_1_a21,
     author = {A. A. Dobrynin},
     title = {On the preservation of the {Wiener} index of cubic graphs upon vertex removal},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {285--292},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a21/}
}
TY  - JOUR
AU  - A. A. Dobrynin
TI  - On the preservation of the Wiener index of cubic graphs upon vertex removal
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 285
EP  - 292
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a21/
LA  - en
ID  - SEMR_2023_20_1_a21
ER  - 
%0 Journal Article
%A A. A. Dobrynin
%T On the preservation of the Wiener index of cubic graphs upon vertex removal
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 285-292
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a21/
%G en
%F SEMR_2023_20_1_a21
A. A. Dobrynin. On the preservation of the Wiener index of cubic graphs upon vertex removal. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 285-292. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a21/

[1] M. Akhmejanova, K. Olmezov, A. Volostnov, I. Vorobyev, K. Vorob'ev, Y. Yarovikov, “Wiener index and graphs, almost half of whose vertices satisfy Šoltés property”, Discrete Appl. Math., 325 (2023), 37–42 | DOI | MR | Zbl

[2] J. Bok, N. Jedličková, J. Maxová, “On relaxed Šoltés's problem”, Acta Math. Univ. Comenianae, 88:3 (2019), 475–480 | MR

[3] J. Bok, N. Jedličková, J. Maxová, “A relaxed version of Šoltés's problem and cactus graphs”, Bull. Malays. Math. Sci. Soc. (2), 44:6 (2021), 3733–3745 | DOI | MR | Zbl

[4] A.A. Dobrynin, R. Entringer, I. Gutman, “Wiener index for trees: Theory and applications”, Acta Appl. Math., 66:3 (2001), 211–249 | DOI | MR | Zbl

[5] A.A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, “Wiener index of hexagonal systems”, Acta Appl. Math., 72:3 (2002), 247–294 | DOI | MR | Zbl

[6] I. Gutman, O.E. Polansky, Mathematical concepts in organic chemistry, Springer–Verlag, Berlin etc, 1986 | MR | Zbl

[7] Y. Hu, Z. Zhu, P. Wu, Z. Shao, A. Fahad, “On investigations of graphs preserving the Wiener index upon vertex removal”, AIMS Math., 6:12 (2021), 12976–12985 | DOI | MR | Zbl

[8] M. Knor, S. Majstorović, R. Škrekovski, “Graphs whose Wiener index does not change when a specific vertex is removed”, Discrete Appl. Math., 238 (2018), 126–132 | DOI | MR | Zbl

[9] M. Knor, S. Majstorović, R. Škrekovski, “Graphs preserving Wiener index upon vertex removal”, Appl. Math. Comput., 338 (2018), 25–32 | MR | Zbl

[10] M. Knor, R. Škrekovski, A. Tepeh, “Mathematical aspects of Wiener index”, Ars Math. Contemp., 11:2 (2016), 327–352 | DOI | MR | Zbl

[11] S. Majstorović, M. Knor, R. Škrekovski, “Graphs preserving total distance upon vertex removal”, Electron. Notes Discrete Math., 68 (2018), 107–112 | DOI | MR | Zbl

[12] L. Šoltés, “Transmission in graphs: A bound and vertex removing”, Math. Slovaca, 41:1 (1991), 11–16 | MR | Zbl

[13] S. Spiro, “The Wiener index of signed graphs”, Appl. Math. Comput., 416 (2022), 126755 | MR | Zbl

[14] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992

[15] H. Wiener, “Structural determination of paraffin boiling points”, J. Amer. Chem. Soc., 69 (1947), 17–20 | DOI