Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a17, author = {P. N. Klepikov and E. D. Rodionov and O. P. Khromova}, title = {Invariant {Ricci} solitons on three-dimensional nonunimodular {Lie} groups with a left-invariant {Lorentzian} metric and a semisymmetric connection}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {48--61}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a17/} }
TY - JOUR AU - P. N. Klepikov AU - E. D. Rodionov AU - O. P. Khromova TI - Invariant Ricci solitons on three-dimensional nonunimodular Lie groups with a left-invariant Lorentzian metric and a semisymmetric connection JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 48 EP - 61 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a17/ LA - ru ID - SEMR_2023_20_1_a17 ER -
%0 Journal Article %A P. N. Klepikov %A E. D. Rodionov %A O. P. Khromova %T Invariant Ricci solitons on three-dimensional nonunimodular Lie groups with a left-invariant Lorentzian metric and a semisymmetric connection %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 48-61 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a17/ %G ru %F SEMR_2023_20_1_a17
P. N. Klepikov; E. D. Rodionov; O. P. Khromova. Invariant Ricci solitons on three-dimensional nonunimodular Lie groups with a left-invariant Lorentzian metric and a semisymmetric connection. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 48-61. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a17/
[1] E. Cartan, “Sur les variétés à connexion affine et la théorie de la relativité généralisée. II”, Annales Ecole norm. (3), 42 (1925), 17–88 | MR | Zbl
[2] G. Muniraja, “Manifolds admitting a semi-symmetric metric connection and a generalization of Schur's theorem”, Int. J. Contemp. Math. Sci., 3:25-28 (2008), 1223–1232 | MR | Zbl
[3] I. Agricola, C. Thier, “The geodesics of metric connections with vectorial torsion”, Ann. Global Anal. Geom., 26:4 (2004), 321–332 | DOI | MR | Zbl
[4] C. Murathan, C. Özgür, “Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions”, Proc. Est. Acad. Sci., 57:4 (2008), 210–216 | DOI | MR | Zbl
[5] H.B. Yilmaz, F.Ö. Zengin, S.A. Uysal, “On a semi symmetric metric connection with a special condition on a Riemannian manifold”, Eur. J. Pure Appl. Math., 4:2 (2011), 153–161 | MR | Zbl
[6] F.Ö. Zengin, S.A. Demirbağ, S.A. Uysal, Y.H. Bağdatli, “Some vector fields on a Riemannian manifold with semi-symmetric metric connection”, Bull. Iran. Math. Soc., 38:2 (2012), 479–490 | MR | Zbl
[7] I. Agricola, M. Kraus, “Manifolds with vectorial torsion”, Differ. Geom. Appl., 45 (2016), 130–147 | DOI | MR | Zbl
[8] K. Yano, “On semi-symmetric metric connection”, Rev. Roum. Math. Pures Appl., 15 (1970), 1579–1586 | MR | Zbl
[9] B. Barua, A.Kr. Ray, “Some properties of a semi-symmetric metric connection in a Riemannian manifold”, Indian J. Pure Appl. Math., 16:7 (1985), 736–740 | MR | Zbl
[10] U.C. De, B.K. De, “Some properties of a semi-symmetric metric connection on a Riemannian manifold”, Istanb. Üniv. Fen Fak. Mat. Derg., 54 (1995), 111–117 | MR | Zbl
[11] L.F. Di Cerbo, “Generic properties of homogeneous Ricci solitons”, Adv. Geom., 14:2 (2014), 225–237 | DOI | MR | Zbl
[12] P.N. Klepikov, D.N. Oskorbin, “Homogeneous invariant Ricci solitons on four-dimensional Lie groups”, Izvestiya of Altai State University, 85:1-2 (2015), 115–122
[13] P.N. Klepikov, E.D. Rodionov, O.P. Khromova, “Invariant Ricci solitons on three-dimensional metric Lie groups with semi-symmetric connection”, Russ. Math., 65:8 (2021), 70–74 | DOI | MR | Zbl
[14] E.D. Rodionov, V.V. Slavskii, L.N. Chibrikova, “Locally conformally homogeneous pseudo-Riemannian spaces”, Sib. Adv. Math., 17:3 (2007), 186–212 | DOI | MR | Zbl
[15] G. Calvaruso, “Homogeneous structures on three-dimensional Lorentzian manifolds”, J. Geom. Phys., 57:4 (2007), 1279–1291 | DOI | MR | Zbl
[16] L.A. Cordero, P.E. Parker, “Left-invariant Lorentzian metrics on 3-dimensional Lie groups”, Rend. Mat. Appl., VII. Ser., 17:1 (1997), 129–155 | MR | Zbl
[17] O. Khromova, P. Klepikov, E. Rodionov, “Invariant Ricci solitons on metric Lie groups with semi-symmetric connections”, Classical and Modern Geometry, Proceedings of the International Conference Dedicated to the 100th Anniversary of the Birth of L.S. Atanasyan, MPGU, M., 2021, 22–23 | MR