Invariant Ricci solitons on three-dimensional nonunimodular Lie groups with a left-invariant Lorentzian metric and a semisymmetric connection
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 48-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate invariant Ricci solitons on three-dimensional nonunimodular metric Lie groups with a semisymmetric connection. We have proved that there exist nontrivial invariant Ricci solitons on some three-dimensional Lie groups with a left-invariant Lorentzian metric and a semisymmetric non Levi-Civita connection. Moreover a complete classification of nontrivial invariant Ricci solitons and the corresponding semisymmetric connections on three-dimensional nonunimodular Lie groups is obtained. In result we have given an answer on L.Cerbo conjecture about nontrivial invariant Ricci solitons.
Mots-clés : invariant Ricci solitons
Keywords: Lie groups, left-invariant Lorentzian metrics, semisymmetric connections.
@article{SEMR_2023_20_1_a17,
     author = {P. N. Klepikov and E. D. Rodionov and O. P. Khromova},
     title = {Invariant {Ricci} solitons on three-dimensional nonunimodular {Lie} groups with a left-invariant {Lorentzian} metric and a semisymmetric connection},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {48--61},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a17/}
}
TY  - JOUR
AU  - P. N. Klepikov
AU  - E. D. Rodionov
AU  - O. P. Khromova
TI  - Invariant Ricci solitons on three-dimensional nonunimodular Lie groups with a left-invariant Lorentzian metric and a semisymmetric connection
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 48
EP  - 61
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a17/
LA  - ru
ID  - SEMR_2023_20_1_a17
ER  - 
%0 Journal Article
%A P. N. Klepikov
%A E. D. Rodionov
%A O. P. Khromova
%T Invariant Ricci solitons on three-dimensional nonunimodular Lie groups with a left-invariant Lorentzian metric and a semisymmetric connection
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 48-61
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a17/
%G ru
%F SEMR_2023_20_1_a17
P. N. Klepikov; E. D. Rodionov; O. P. Khromova. Invariant Ricci solitons on three-dimensional nonunimodular Lie groups with a left-invariant Lorentzian metric and a semisymmetric connection. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 48-61. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a17/

[1] E. Cartan, “Sur les variétés à connexion affine et la théorie de la relativité généralisée. II”, Annales Ecole norm. (3), 42 (1925), 17–88 | MR | Zbl

[2] G. Muniraja, “Manifolds admitting a semi-symmetric metric connection and a generalization of Schur's theorem”, Int. J. Contemp. Math. Sci., 3:25-28 (2008), 1223–1232 | MR | Zbl

[3] I. Agricola, C. Thier, “The geodesics of metric connections with vectorial torsion”, Ann. Global Anal. Geom., 26:4 (2004), 321–332 | DOI | MR | Zbl

[4] C. Murathan, C. Özgür, “Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions”, Proc. Est. Acad. Sci., 57:4 (2008), 210–216 | DOI | MR | Zbl

[5] H.B. Yilmaz, F.Ö. Zengin, S.A. Uysal, “On a semi symmetric metric connection with a special condition on a Riemannian manifold”, Eur. J. Pure Appl. Math., 4:2 (2011), 153–161 | MR | Zbl

[6] F.Ö. Zengin, S.A. Demirbağ, S.A. Uysal, Y.H. Bağdatli, “Some vector fields on a Riemannian manifold with semi-symmetric metric connection”, Bull. Iran. Math. Soc., 38:2 (2012), 479–490 | MR | Zbl

[7] I. Agricola, M. Kraus, “Manifolds with vectorial torsion”, Differ. Geom. Appl., 45 (2016), 130–147 | DOI | MR | Zbl

[8] K. Yano, “On semi-symmetric metric connection”, Rev. Roum. Math. Pures Appl., 15 (1970), 1579–1586 | MR | Zbl

[9] B. Barua, A.Kr. Ray, “Some properties of a semi-symmetric metric connection in a Riemannian manifold”, Indian J. Pure Appl. Math., 16:7 (1985), 736–740 | MR | Zbl

[10] U.C. De, B.K. De, “Some properties of a semi-symmetric metric connection on a Riemannian manifold”, Istanb. Üniv. Fen Fak. Mat. Derg., 54 (1995), 111–117 | MR | Zbl

[11] L.F. Di Cerbo, “Generic properties of homogeneous Ricci solitons”, Adv. Geom., 14:2 (2014), 225–237 | DOI | MR | Zbl

[12] P.N. Klepikov, D.N. Oskorbin, “Homogeneous invariant Ricci solitons on four-dimensional Lie groups”, Izvestiya of Altai State University, 85:1-2 (2015), 115–122

[13] P.N. Klepikov, E.D. Rodionov, O.P. Khromova, “Invariant Ricci solitons on three-dimensional metric Lie groups with semi-symmetric connection”, Russ. Math., 65:8 (2021), 70–74 | DOI | MR | Zbl

[14] E.D. Rodionov, V.V. Slavskii, L.N. Chibrikova, “Locally conformally homogeneous pseudo-Riemannian spaces”, Sib. Adv. Math., 17:3 (2007), 186–212 | DOI | MR | Zbl

[15] G. Calvaruso, “Homogeneous structures on three-dimensional Lorentzian manifolds”, J. Geom. Phys., 57:4 (2007), 1279–1291 | DOI | MR | Zbl

[16] L.A. Cordero, P.E. Parker, “Left-invariant Lorentzian metrics on 3-dimensional Lie groups”, Rend. Mat. Appl., VII. Ser., 17:1 (1997), 129–155 | MR | Zbl

[17] O. Khromova, P. Klepikov, E. Rodionov, “Invariant Ricci solitons on metric Lie groups with semi-symmetric connections”, Classical and Modern Geometry, Proceedings of the International Conference Dedicated to the 100th Anniversary of the Birth of L.S. Atanasyan, MPGU, M., 2021, 22–23 | MR