Properties of boundary functionals for a random walk with stable jump distributions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 455-464
Voir la notice de l'article provenant de la source Math-Net.Ru
For a random walk with jumps having strictly stable distributions, we obtain theorems that characterize properties of ladder epochs and ladder heights. We also give exact expressions for the distribution of the sojourn time of the random walk trajectory on the positive semi-axis for a finite number of steps.
Keywords:
random walk, ladder epoch, ladder height, strictly stable distribution, sojourn time on the semi-axis.
@article{SEMR_2023_20_1_a13,
author = {V. I. Lotov},
title = {Properties of boundary functionals for a random walk with stable jump distributions},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {455--464},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a13/}
}
TY - JOUR AU - V. I. Lotov TI - Properties of boundary functionals for a random walk with stable jump distributions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 455 EP - 464 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a13/ LA - ru ID - SEMR_2023_20_1_a13 ER -
V. I. Lotov. Properties of boundary functionals for a random walk with stable jump distributions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 455-464. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a13/