Properties of boundary functionals for a random walk with stable jump distributions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 455-464.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a random walk with jumps having strictly stable distributions, we obtain theorems that characterize properties of ladder epochs and ladder heights. We also give exact expressions for the distribution of the sojourn time of the random walk trajectory on the positive semi-axis for a finite number of steps.
Keywords: random walk, ladder epoch, ladder height, strictly stable distribution, sojourn time on the semi-axis.
@article{SEMR_2023_20_1_a13,
     author = {V. I. Lotov},
     title = {Properties of boundary functionals for a random walk with stable jump distributions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {455--464},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a13/}
}
TY  - JOUR
AU  - V. I. Lotov
TI  - Properties of boundary functionals for a random walk with stable jump distributions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 455
EP  - 464
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a13/
LA  - ru
ID  - SEMR_2023_20_1_a13
ER  - 
%0 Journal Article
%A V. I. Lotov
%T Properties of boundary functionals for a random walk with stable jump distributions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 455-464
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a13/
%G ru
%F SEMR_2023_20_1_a13
V. I. Lotov. Properties of boundary functionals for a random walk with stable jump distributions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 455-464. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a13/

[1] V.I. Lotov, “On some boundary crossing problems for Gaussian random walks”, Ann. Probab., 24:4 (1996), 2154–2171 | DOI | MR | Zbl

[2] Ya.G. Sinai, “On the distribution of the first positive sum for the sequence of independent random variables”, Teor. Veroyatn. Primen., 2:1 (1957), 126–135 | MR | Zbl

[3] B.A. Rogozin, “On the distribution of the first jump”, Teor. Veroyatn. Primen., 9:3 (1964), 498–515 | MR | Zbl

[4] B.A. Rogozin, “The distribution of the first ladder moment and height and fluctuation of a random walk”, Theory Probab. Appl., 16:4 (1971), 575–595 | DOI | MR | Zbl

[5] R.A. Doney, “Moments of ladder height in random walks”, J. Appl. Probab., 17:1 (1980), 248–252 | DOI | MR | Zbl

[6] R.A. Doney, “On the asymptotic behaviour of first passage times for transient random walk”, Probab. Theory Relat. Fields, 18:2 (1989), 239–246 | DOI | MR | Zbl

[7] A.V. Nagaev, “On a method of calculating moments of ladder heights”, Theory Probab. Appl., 30:3 (1986), 569–572 | DOI | MR | Zbl

[8] S.V. Nagaev, “Exact expressions for the moments of ladder heights”, Sib. Math. J., 51:4 (2010), 675–695 | DOI | MR | Zbl

[9] T.V. Lazovskaya, S.V. Nagaev, “Problems in calculating moments and distribution functions of ladder heights”, J. Math. Sci., New York, 218:2 (2016), 195–207 | DOI | MR | Zbl

[10] A.A. Borovkov, Probability Theory, Springer, London, 2013 | MR | Zbl

[11] W. Feller, An introduction to Probability Theory and its applications, v. 2, John Wiley and Sons, New York etc., 1971 | MR | Zbl

[12] S.J. Wolfe, “On moments of probability distributions functions”, Lect. Notes Math., 457, 1975, 306–316 | DOI | MR | Zbl

[13] I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products, Academic Press, Amsterdam, 2007 | MR | Zbl

[14] F. Spitzer, Principles of random walk, Springer-Verlag, New York etc, 1976 | MR | Zbl

[15] A.V. Skorokhod, N.P. Slobodenyuk, Limit theorems for random walks, Naukova Dumka, Kiev, 1970 | MR | Zbl

[16] A.N. Borodin, I.A. Ibragimov, “Limit theorems for functionals of random walks”, Proc. Steklov Inst. Math., 195 (1995), AMS, Providence | MR | Zbl

[17] A.T. Semenov, “Asymptotic expansion for distribution of linger time of a random walk in a segment”, Sib. Math. J., 15:4 (1974), 650–658 | DOI | MR | Zbl

[18] V.I. Lotov, “On the sojourn time of a random walk in a strip”, Sib. Math. J., 51:4 (2010), 621–638 | DOI | MR | Zbl

[19] V.I. Lotov, “Factorization identities for the sojourn time of a random walk in a strip”, Sib. Math. J., 51:1 (2010), 119–127 | DOI | MR | Zbl