Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a13, author = {V. I. Lotov}, title = {Properties of boundary functionals for a random walk with stable jump distributions}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {455--464}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a13/} }
TY - JOUR AU - V. I. Lotov TI - Properties of boundary functionals for a random walk with stable jump distributions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 455 EP - 464 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a13/ LA - ru ID - SEMR_2023_20_1_a13 ER -
V. I. Lotov. Properties of boundary functionals for a random walk with stable jump distributions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 455-464. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a13/
[1] V.I. Lotov, “On some boundary crossing problems for Gaussian random walks”, Ann. Probab., 24:4 (1996), 2154–2171 | DOI | MR | Zbl
[2] Ya.G. Sinai, “On the distribution of the first positive sum for the sequence of independent random variables”, Teor. Veroyatn. Primen., 2:1 (1957), 126–135 | MR | Zbl
[3] B.A. Rogozin, “On the distribution of the first jump”, Teor. Veroyatn. Primen., 9:3 (1964), 498–515 | MR | Zbl
[4] B.A. Rogozin, “The distribution of the first ladder moment and height and fluctuation of a random walk”, Theory Probab. Appl., 16:4 (1971), 575–595 | DOI | MR | Zbl
[5] R.A. Doney, “Moments of ladder height in random walks”, J. Appl. Probab., 17:1 (1980), 248–252 | DOI | MR | Zbl
[6] R.A. Doney, “On the asymptotic behaviour of first passage times for transient random walk”, Probab. Theory Relat. Fields, 18:2 (1989), 239–246 | DOI | MR | Zbl
[7] A.V. Nagaev, “On a method of calculating moments of ladder heights”, Theory Probab. Appl., 30:3 (1986), 569–572 | DOI | MR | Zbl
[8] S.V. Nagaev, “Exact expressions for the moments of ladder heights”, Sib. Math. J., 51:4 (2010), 675–695 | DOI | MR | Zbl
[9] T.V. Lazovskaya, S.V. Nagaev, “Problems in calculating moments and distribution functions of ladder heights”, J. Math. Sci., New York, 218:2 (2016), 195–207 | DOI | MR | Zbl
[10] A.A. Borovkov, Probability Theory, Springer, London, 2013 | MR | Zbl
[11] W. Feller, An introduction to Probability Theory and its applications, v. 2, John Wiley and Sons, New York etc., 1971 | MR | Zbl
[12] S.J. Wolfe, “On moments of probability distributions functions”, Lect. Notes Math., 457, 1975, 306–316 | DOI | MR | Zbl
[13] I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products, Academic Press, Amsterdam, 2007 | MR | Zbl
[14] F. Spitzer, Principles of random walk, Springer-Verlag, New York etc, 1976 | MR | Zbl
[15] A.V. Skorokhod, N.P. Slobodenyuk, Limit theorems for random walks, Naukova Dumka, Kiev, 1970 | MR | Zbl
[16] A.N. Borodin, I.A. Ibragimov, “Limit theorems for functionals of random walks”, Proc. Steklov Inst. Math., 195 (1995), AMS, Providence | MR | Zbl
[17] A.T. Semenov, “Asymptotic expansion for distribution of linger time of a random walk in a segment”, Sib. Math. J., 15:4 (1974), 650–658 | DOI | MR | Zbl
[18] V.I. Lotov, “On the sojourn time of a random walk in a strip”, Sib. Math. J., 51:4 (2010), 621–638 | DOI | MR | Zbl
[19] V.I. Lotov, “Factorization identities for the sojourn time of a random walk in a strip”, Sib. Math. J., 51:1 (2010), 119–127 | DOI | MR | Zbl