On first-passage times for symmetric random walks without Lindeberg condition
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 86-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider exit times for random walks with independent but not necessarily identically distributed increments. We are going to describe an asymptotic behavior of the probability that the random walk stays above the moving boundary for a long time. In the paper by D. Denisov, A. Sakhanenko, and V. Wachtel (Ann. Probab., 2018) an universal asymptotic formula for such probability was found in the case when the random walk satisfies the classical Lindeberg condition. Now we investigate a question if it is possible to find similar asymptotics for more general random walks when increments may have infinite variances, but the central limit theorem is still valid. We obtain such result for a class of walks with symmetrically distributed increments.
Keywords: random walk, symmetric distribution, exit time, central limit theorem, moving boundary.
@article{SEMR_2023_20_1_a12,
     author = {A. I. Sakhanenko},
     title = {On first-passage times for symmetric random walks without {Lindeberg} condition},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {86--99},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a12/}
}
TY  - JOUR
AU  - A. I. Sakhanenko
TI  - On first-passage times for symmetric random walks without Lindeberg condition
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 86
EP  - 99
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a12/
LA  - ru
ID  - SEMR_2023_20_1_a12
ER  - 
%0 Journal Article
%A A. I. Sakhanenko
%T On first-passage times for symmetric random walks without Lindeberg condition
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 86-99
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a12/
%G ru
%F SEMR_2023_20_1_a12
A. I. Sakhanenko. On first-passage times for symmetric random walks without Lindeberg condition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 86-99. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a12/

[1] D. Denisov, A. Sakhanenko, V. Wachtel, “First-passage times for random walks with non-identically distributed increments”, Ann. Probab., 46:6 (2018), 3313–3350 | DOI | MR | Zbl

[2] D. Denisov, A. Sakhanenko, V. Wachtel, “First-passage times for random walks in the triangular array setting”, A lifetime of excursions through random walks and Lévy processes. A volume in honour of Ron Doney's 80th birthday, Prog. Probab., 78, eds. Chaumont Loïc et al., Birkhäuser, Cham, 2021, 181–203 | DOI | MR | Zbl

[3] R.A. Doney, “Spitzer's condition and ladder variables in random walks”, Probab. Theory Relat. Fields, 101:4 (1995), 577–580 | DOI | MR | Zbl

[4] M. Loéve, Probability Theory I, Graduate Texts in Mathematics, 45, Springer-Verlag, New York-Heidelberg-Berlin, 1977 | MR | Zbl