On function spaces.~II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 815-834.

Voir la notice de l'article provenant de la source Math-Net.Ru

For certain properties $\mathfrak{P}$ of topological $T_0$-spaces, we prove that a $T_0$-space $\mathbb{Y}$ has property $\mathfrak{P}$ if and only if the function space $\mathbb{C}_\mathcal{T}(\mathbb{X},\mathbb{Y})$ endowed with a particular topology $\mathcal{T}$ possesses $\mathfrak{P}$ for some $T_0$-space $\mathbb{X}$.
Keywords: $A$-space, core-compact space, $d$-space, essentially complete space, function space, injective space, sober space, $T_0$-space.
@article{SEMR_2022_19_2_a9,
     author = {Yu. L. Ershov and M. V. Schwidefsky},
     title = {On function {spaces.~II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {815--834},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a9/}
}
TY  - JOUR
AU  - Yu. L. Ershov
AU  - M. V. Schwidefsky
TI  - On function spaces.~II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 815
EP  - 834
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a9/
LA  - en
ID  - SEMR_2022_19_2_a9
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%A M. V. Schwidefsky
%T On function spaces.~II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 815-834
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a9/
%G en
%F SEMR_2022_19_2_a9
Yu. L. Ershov; M. V. Schwidefsky. On function spaces.~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 815-834. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a9/

[1] R. Arens, J. Dugundji, “Topologies for function spaces”, Pac. J. Math., 1 (1951), 5–31 | DOI | MR | Zbl

[2] B. Banaschewski, “Essential extensions of $T_0$-spaces”, General Topol. Appl., 7 (1977), 233–246 | DOI | MR | Zbl

[3] T. Bice, “Grätzer-Hofmann-Lawson-Jung-Sünderhauf duality”, Algebra Univers., 82:2 (2021), 35 | DOI | MR | Zbl

[4] B.J. Day, G.M. Kelly, “On topological quotient maps preserved by pullbacks or products”, Proc. Camb. Philos. Soc., 67 (1970), 553–558 | DOI | MR | Zbl

[5] Yu.L. Ershov, “On $d$-spaces”, Theor. Comput. Sci., 224:1-2 (1999), 59–72 | DOI | MR | Zbl

[6] Yu.L. Ershov, “On essential extensions of $T_0$-spaces”, Dokl. Math., 60:2 (1999), 188–191 | MR | Zbl

[7] Yu.L. Ershov, “$\Delta$-spaces”, Algebra Logic, 38:6 (1999), 367–373 | DOI | MR | Zbl

[8] Yu.L. Ershov, “Essential extensions of $T_0$-spaces. II”, Algebra Logic, 55:1 (2016), 1–8 | DOI | MR | Zbl

[9] Yu.L. Ershov, Topology for discrete mathematics, Siberian Branch of RAS, Novosibirsk, 2020

[10] Yu.L. Ershov, M.V. Schwidefsky, “On function spaces”, Sib. Èlectron. Mat. Izv., 17 (2020), 999–1008 | DOI | MR | Zbl

[11] P.T. Johnstone, A. Joyal, “Continuous categories and exponential toposes”, J. Pure Appl. Algebra, 25 (1982), 255–296 | DOI | MR | Zbl

[12] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, D.S. Scott, Continuous lattices and domains, Encyclopedia of Mathematics and its Applications, 93, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[13] J. Goubault-Larrecq, Non-Hausdorff topology and domain theory. Selected topics in point-set topology, New Mathematical Monographs, 22, Cambridge University Press, Cambridge, 2013 | MR | Zbl

[14] Bei Liu, Qingguo Li, Weng Kin Ho, “On function spaces related to $d$-spaces”, Topology Appl., 300 (2021), 107757 | DOI | MR | Zbl

[15] Liu Ying-Ming, Liang Ji-Hua, “Solutions of two problems of J.D. Lawson and M.W. Mislove”, Topology Appl., 69:2 (1996), 153–164 | DOI | MR | Zbl