Some remarks on differential operators in the classes of I.I. Privalov
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 784-791.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the invariance of Privalov classes with respect to the differentiation operator. We prof a necessary and sufficient condition for the invariance of a plane weighted Privalov classes in the unit disc and we have expanded the indicated results for an any bounded domain on the complex plane.
Keywords: Privalov class, differentiation operator, Whitney decomposition.
@article{SEMR_2022_19_2_a52,
     author = {F. A. Shamoyan and N. M. Makhina},
     title = {Some remarks on differential operators in the classes of {I.I.} {Privalov}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {784--791},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a52/}
}
TY  - JOUR
AU  - F. A. Shamoyan
AU  - N. M. Makhina
TI  - Some remarks on differential operators in the classes of I.I. Privalov
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 784
EP  - 791
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a52/
LA  - ru
ID  - SEMR_2022_19_2_a52
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%A N. M. Makhina
%T Some remarks on differential operators in the classes of I.I. Privalov
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 784-791
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a52/
%G ru
%F SEMR_2022_19_2_a52
F. A. Shamoyan; N. M. Makhina. Some remarks on differential operators in the classes of I.I. Privalov. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 784-791. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a52/

[1] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthiers-Villars, Paris, 1929 | MR | Zbl

[2] O. Frostman, “Sur les produits des Blaschke”, Fysiogr. Sällsk. Lund Förh., 12:15 (1942), 169–182 | MR | Zbl

[3] F.A. Shamoyan, V.A. Bednazh, V.A. Kustova, “Blaschke product in Privalov classes”, Sib. Èlectron. Math. Izv., 18:1 (2021), 168–175 | DOI | MR | Zbl

[4] D. Campbell, G. Wickes, “The Bloch-Nevanlinna conjecture revisited”, Bull. Aust. Math. Soc., 18:3 (1978), 447–453 | DOI | MR | Zbl

[5] S.V. Shvedenko, “Hardy classes and spaces of analytic functions in the unit circle, polycircle and ball, connected with them”, Itogi Nauki Tekh., Ser. Mat. Anal., 23, 1985, 3–124 | MR | Zbl

[6] E.G. Rodikova, F.A. Shamoyan, “On the differentiation in the Privalov classes”, J. Sib. Fed. Univ., Math. Phys., 13:5 (2020), 622–630 | DOI | MR | Zbl

[7] F.A. Shamoyan, I.S. Kursina, “On invariance of some classes of holomorphic functions under integrodifferential operators”, J. Math. Sci., New York, 107:4 (2001), 4097–4107 | DOI | MR | Zbl

[8] C. Fefferman, E. Stein, “$H^p$ spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl

[9] N.M. Tkachenko, F.A. Shamoyan, “The Hardy-Littlewood theorem and the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundar”, J. Math. Phys., Anal. Geom., 5:2 (2009), 192–210 | MR | Zbl