On Jacobian group and complexity of the $Y$-graph
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 662-673.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we suggest a simple approach for counting Jacobian group of the $Y$-graph $Y(n; k, l, m).$ In the case $Y(n; 1, 1, 1)$ the structure of the Jacobian group will be find explicitly. Also, we obtain a closed formula for the number of spanning trees of $Y$-graph in terms of Chebyshev polynomials and give its asymtotics.
Keywords: spanning tree, Chebyshev polynomial, Mahler measure.
Mots-clés : Jacobian group, Laplacian matrix
@article{SEMR_2022_19_2_a51,
     author = {Y. S. Kwon and A. D. Mednykh and I. A. Mednykh},
     title = {On {Jacobian} group and complexity of the $Y$-graph},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {662--673},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a51/}
}
TY  - JOUR
AU  - Y. S. Kwon
AU  - A. D. Mednykh
AU  - I. A. Mednykh
TI  - On Jacobian group and complexity of the $Y$-graph
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 662
EP  - 673
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a51/
LA  - en
ID  - SEMR_2022_19_2_a51
ER  - 
%0 Journal Article
%A Y. S. Kwon
%A A. D. Mednykh
%A I. A. Mednykh
%T On Jacobian group and complexity of the $Y$-graph
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 662-673
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a51/
%G en
%F SEMR_2022_19_2_a51
Y. S. Kwon; A. D. Mednykh; I. A. Mednykh. On Jacobian group and complexity of the $Y$-graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 662-673. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a51/

[1] R. Cori, D. Rossin, “On the sandpile group of dual graphs”, Eur. J. Comb., 21:4 (2000), 447–459 | DOI | MR | Zbl

[2] M. Baker, S. Norine, “Harmonic morphisms and hyperelliptic graphs”, Int. Math. Res. Not., 15 (2009), 2914–2955 | MR | Zbl

[3] N.L. Biggs, “Chip-firing and the critical group of a graph”, J. Algebr. Comb., 9:1 (1999), 25–45 | DOI | MR | Zbl

[4] R. Bacher, P. de la Harpe, T. Nagnibeda, “The lattice of integral flows and the lattice of integral cuts on a finite graph”, Bull. Soc. Math. Fr., 125:2 (1997), 167–198 | DOI | MR | Zbl

[5] F.T. Boesch, H. Prodinger, “Spanning tree formulas and Chebyshev polynomials”, Graphs Comb., 2:1 (1986), 191–200 | DOI | MR | Zbl

[6] S.D. Nikolopoulos, C. Papadopoulos, “The number of spanning trees in $K_n$-complements of quasi-threshold graphs”, Graph Comb., 20:3 (2004), 383–397 | DOI | MR | Zbl

[7] R. Shrock, F.Y. Wu, “Spanning trees on graphs and lattices in d-dimensions”, J. Phys. A, Math. Gen., 33:21 (2000), 3881–3902 | DOI | MR | Zbl

[8] S.C. Chang, L.C. Chen, W.S. Yang, “Spanning trees on the Sierpinski gasket”, J. Stat. Phys., 126:3 (2007), 649–667 | DOI | MR | Zbl

[9] D. D'Angeli, A. Donno, “Weighted spanning trees on some self-similar graphs”, Electron. J. Comb., 18:1 (2011), 16–43 | MR | Zbl

[10] W. Sun, S. Wang, J. Zhang, “Counting spanning trees in prism and anti-prism graphs”, J. Appl. Anal. Comput., 6:1 (2016), 65–75 | MR | Zbl

[11] D. Lorenzini, “Smith normal form and Laplacians”, J. Comb. Theory Ser. B., 98:6 (2008), 1271–1300 | DOI | MR | Zbl

[12] Yaoping Hou, Chingwah Woo, Pingge Chen, “On the sandpile group of the square cycle $C^2_n$”, Linear Algebra Appl., 418:2-3 (2006), 457–467 | DOI | MR | Zbl

[13] Chen Pingge, Hou Yaoping, “On the critical group of the Möbius ladder graph”, Austral. J. Comb., 36 (2006), 133–142 | MR | Zbl

[14] I.A. Mednykh, M.A. Zindinova, “On the structure of Picard group for Möbius ladder”, Sib. Èlectron. Math. Izv., 8 (2011), 54–61 | MR | Zbl

[15] A.D. Mednykh, I.A. Mednykh, “On the structure of the Jacobian group for circulant graphs”, Dokl. Math., 94:1 (2016), 445–449 | DOI | MR | Zbl

[16] Zhang Yuanping, Yong Xuerong, M.J. Golin, “The number of spanning trees in circulant graphs”, Discrete Math., 223:1-3 (2000), 337–350 | DOI | MR | Zbl

[17] Zhang Yuanping, Xuerong Yong, M.J. Golin, “Chebyshev polynomials and spanning tree formulas for circulant and related graphs”, Discrete Math., 298:1-3 (2005), 334–364 | DOI | MR | Zbl

[18] Chen Xiebin, Qiuying Lin, Fuji Zhang, “The number of spanning trees in odd valent circulant graphs”, Discrete Math., 282:1-3 (2004), 69–79 | DOI | MR | Zbl

[19] A. Mednykh, I. Mednykh, “The number of spanning trees in circulant graphs, its arithmetic properties and asymptotic”, Discrete Math., 342:6 (2019), 1772–1781 | DOI | MR | Zbl

[20] A.D. Mednykh, I.A. Mednykh, “Asymptotics and arithmetical properties of complexity for circulant graphs”, Dokl. Math., 97:2 (2018), 147–151 | DOI | MR | Zbl

[21] Y.S. Kwon, A.D. Mednykh, I.A. Mednykh, “Complexity of the circulant foliation over a graph”, J. Algebr. Comb., 53:1 (2021), 115–129 | DOI | MR | Zbl

[22] Y.S. Kwon, A.D. Mednykh, I.A. Mednykh, “On Jacobian group and complexity of the generalized Petersen graph $GP(n, k)$ through Chebyshev polynomials”, Linear Algebra Appl., 529 (2017), 355–373 | DOI | MR | Zbl

[23] I.A. Mednykh, “On Jacobian group and complexity of $I$-graph $I(n,k,l)$ through Chebyshev polynomials”, Ars Math. Contemp., 15:2 (2018), 467–485 | DOI | MR | Zbl

[24] N.L. Biggs, “Three remarkable graphs”, Canad. J. Math., 25 (1973), 397–411 | DOI | MR | Zbl

[25] J.D. Horton, I.Z. Bouwer, “Symmetric Y-graphs and H-graphs”, J. Comb. Theory. Ser. B, 53:1 (1991), 114–129 | DOI | MR | Zbl

[26] P.J. Davis, Circulant matrices, John Wiley Sons, New York etc, 1979 | MR | Zbl

[27] H. Corrales, C.E. Valencia, “On the critical group of matrices”, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér., 54(102):3 (2011), 213–236 | MR | Zbl

[28] G. Everest, T. Ward, Heights of polynomials and entropy in algebraic dynamics, Springer Science Business Media, 2013 ; 1999 | MR | Zbl