On Jacobian group and complexity of the $Y$-graph
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 662-673

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we suggest a simple approach for counting Jacobian group of the $Y$-graph $Y(n; k, l, m).$ In the case $Y(n; 1, 1, 1)$ the structure of the Jacobian group will be find explicitly. Also, we obtain a closed formula for the number of spanning trees of $Y$-graph in terms of Chebyshev polynomials and give its asymtotics.
Keywords: spanning tree, Chebyshev polynomial, Mahler measure.
Mots-clés : Jacobian group, Laplacian matrix
@article{SEMR_2022_19_2_a51,
     author = {Y. S. Kwon and A. D. Mednykh and I. A. Mednykh},
     title = {On {Jacobian} group and complexity of the $Y$-graph},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {662--673},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a51/}
}
TY  - JOUR
AU  - Y. S. Kwon
AU  - A. D. Mednykh
AU  - I. A. Mednykh
TI  - On Jacobian group and complexity of the $Y$-graph
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 662
EP  - 673
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a51/
LA  - en
ID  - SEMR_2022_19_2_a51
ER  - 
%0 Journal Article
%A Y. S. Kwon
%A A. D. Mednykh
%A I. A. Mednykh
%T On Jacobian group and complexity of the $Y$-graph
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 662-673
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a51/
%G en
%F SEMR_2022_19_2_a51
Y. S. Kwon; A. D. Mednykh; I. A. Mednykh. On Jacobian group and complexity of the $Y$-graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 662-673. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a51/