On Jacobian group and complexity of the $Y$-graph
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 662-673
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper we suggest a simple approach for counting Jacobian group of the $Y$-graph $Y(n; k, l, m).$ In the case $Y(n; 1, 1, 1)$ the structure of the Jacobian group will be find explicitly. Also, we obtain a closed formula for the number of spanning trees of $Y$-graph in terms of Chebyshev polynomials and give its asymtotics.
Keywords:
spanning tree, Chebyshev polynomial, Mahler measure.
Mots-clés : Jacobian group, Laplacian matrix
Mots-clés : Jacobian group, Laplacian matrix
@article{SEMR_2022_19_2_a51,
author = {Y. S. Kwon and A. D. Mednykh and I. A. Mednykh},
title = {On {Jacobian} group and complexity of the $Y$-graph},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {662--673},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a51/}
}
TY - JOUR AU - Y. S. Kwon AU - A. D. Mednykh AU - I. A. Mednykh TI - On Jacobian group and complexity of the $Y$-graph JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 662 EP - 673 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a51/ LA - en ID - SEMR_2022_19_2_a51 ER -
Y. S. Kwon; A. D. Mednykh; I. A. Mednykh. On Jacobian group and complexity of the $Y$-graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 662-673. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a51/