Toric Morphisms and Diagonals of the Laurent Series of Rational Functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 651-661
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Laurent series of a rational function in $n$ complex variables and the $n$-dimensional sequence of its coefficients. The diagonal subsequence of this sequence generates the so-called complete diagonal of the Laurent series. We give a new integral representation for the complete diagonal. Based on this representation, we give a sufficient condition for a diagonal to be algebraic.
Keywords:
algebraic function, generating function, integral representations, toric morphism.
Mots-clés : diagonal of Laurent series
Mots-clés : diagonal of Laurent series
@article{SEMR_2022_19_2_a50,
author = {D. Yu. Pochekutov and A. V. Senashov},
title = {Toric {Morphisms} and {Diagonals} of the {Laurent} {Series} of {Rational} {Functions}},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {651--661},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a50/}
}
TY - JOUR AU - D. Yu. Pochekutov AU - A. V. Senashov TI - Toric Morphisms and Diagonals of the Laurent Series of Rational Functions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 651 EP - 661 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a50/ LA - en ID - SEMR_2022_19_2_a50 ER -
%0 Journal Article %A D. Yu. Pochekutov %A A. V. Senashov %T Toric Morphisms and Diagonals of the Laurent Series of Rational Functions %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 651-661 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a50/ %G en %F SEMR_2022_19_2_a50
D. Yu. Pochekutov; A. V. Senashov. Toric Morphisms and Diagonals of the Laurent Series of Rational Functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 651-661. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a50/