Toric Morphisms and Diagonals of the Laurent Series of Rational Functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 651-661

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Laurent series of a rational function in $n$ complex variables and the $n$-dimensional sequence of its coefficients. The diagonal subsequence of this sequence generates the so-called complete diagonal of the Laurent series. We give a new integral representation for the complete diagonal. Based on this representation, we give a sufficient condition for a diagonal to be algebraic.
Keywords: algebraic function, generating function, integral representations, toric morphism.
Mots-clés : diagonal of Laurent series
@article{SEMR_2022_19_2_a50,
     author = {D. Yu. Pochekutov and A. V. Senashov},
     title = {Toric {Morphisms} and {Diagonals} of the {Laurent} {Series} of {Rational} {Functions}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {651--661},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a50/}
}
TY  - JOUR
AU  - D. Yu. Pochekutov
AU  - A. V. Senashov
TI  - Toric Morphisms and Diagonals of the Laurent Series of Rational Functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 651
EP  - 661
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a50/
LA  - en
ID  - SEMR_2022_19_2_a50
ER  - 
%0 Journal Article
%A D. Yu. Pochekutov
%A A. V. Senashov
%T Toric Morphisms and Diagonals of the Laurent Series of Rational Functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 651-661
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a50/
%G en
%F SEMR_2022_19_2_a50
D. Yu. Pochekutov; A. V. Senashov. Toric Morphisms and Diagonals of the Laurent Series of Rational Functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 651-661. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a50/