Toric Morphisms and Diagonals of the Laurent Series of Rational Functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 651-661.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Laurent series of a rational function in $n$ complex variables and the $n$-dimensional sequence of its coefficients. The diagonal subsequence of this sequence generates the so-called complete diagonal of the Laurent series. We give a new integral representation for the complete diagonal. Based on this representation, we give a sufficient condition for a diagonal to be algebraic.
Keywords: algebraic function, generating function, integral representations, toric morphism.
Mots-clés : diagonal of Laurent series
@article{SEMR_2022_19_2_a50,
     author = {D. Yu. Pochekutov and A. V. Senashov},
     title = {Toric {Morphisms} and {Diagonals} of the {Laurent} {Series} of {Rational} {Functions}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {651--661},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a50/}
}
TY  - JOUR
AU  - D. Yu. Pochekutov
AU  - A. V. Senashov
TI  - Toric Morphisms and Diagonals of the Laurent Series of Rational Functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 651
EP  - 661
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a50/
LA  - en
ID  - SEMR_2022_19_2_a50
ER  - 
%0 Journal Article
%A D. Yu. Pochekutov
%A A. V. Senashov
%T Toric Morphisms and Diagonals of the Laurent Series of Rational Functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 651-661
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a50/
%G en
%F SEMR_2022_19_2_a50
D. Yu. Pochekutov; A. V. Senashov. Toric Morphisms and Diagonals of the Laurent Series of Rational Functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 651-661. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a50/

[1] A. Bostan, S. Boukraa, G. Christol, S. Hassani, J.-M. Maillard, “Ising $n$-fold integrals as diagonals of rational functions and integrality of series expansions”, J. Phys. A, Math. Theor., 46:18 (2013), 185202 | DOI | MR | Zbl

[2] A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, “Diagonals of rational functions and selected differential Galois groups”, J. Phys. A, Math. Theor., 48:50 (2015), 504001 | DOI | MR | Zbl

[3] R. Stanley, Enumerative combinatorics, v. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[4] G. Pólya, “Sur les séries entières, dont la somme est une fonction algébrique”, Enseign. Math., 22 (1922), 38–47 | Zbl

[5] H. Furstenberg, “Algebraic functions over finite fields”, J. Algebra, 7:2 (1967), 271–277 | DOI | MR | Zbl

[6] K. Safonov, A. Tsikh, “On singularities of the parametric Grothendieck residue and diagonals of a double power series”, Sov. Math., 28:4 (1984), 65–74 | MR | Zbl

[7] D. Pochekutov, “Diagonals of the Laurent series of rational functions”, Sib. Math. J., 50:6 (2009), 1081–1091 | DOI | MR | Zbl

[8] D. Pochekutov, “Analytic continuation of diagonals of Laurent series for rational functions”, J. Sib. Fed. Univ. Math. Phys., 14:3 (2021), 360–368 | DOI | MR | Zbl

[9] A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and series, v. 3, More special functions, Gordon and Breach Science Publishers, New York, 1990 | MR | Zbl

[10] F. Beukers, G. Heckman, “Monodromy for the hypergeometric function ${}_nF_{n-1}$”, Invent. Math., 95:2 (1989), 325–354 | DOI | MR | Zbl

[11] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl

[12] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Adv. Math., 151:1 (2000), 45–70 | DOI | MR | Zbl

[13] C.W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Interscience Publishers, New York-London, 1962 | MR | Zbl

[14] A. Senashov, “A list of integral representations for diagonals of power series of rational functions”, J. Sib. Fed. Univ., Math. Phys., 14:5 (2021), 624–631 | DOI | MR | Zbl