Reconstruction of subsurface scattering objects by the Time Reversal Mirror
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 517-527.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recovery and spatial localization of small scale inhomogeneities in geological media are of fundamental importance to increase the resolution of the geophysical data processing and improve reliability of the results obtained. This paper proposes a method for reconstruction of random subseismic inhomogeneities embedded in a smooth elastic medium using the Time Reversal Mirror approach. The method is based on the time reversibility principle of wave processes in media without attenuation. The interaction of a wavefield with subseismic inhomogeneities is considered as the process of the appearance of "secondary sources" generated by small-scale inclusions. These sources indicate the presence of the geological inhomogeneities in a medium and can be spatially localized using the Time Reversal Mirror method based on the recordings of the data by the acquisition system. Verification of the method proposed was carried out on synthetic data computed by the finite difference method.
Keywords: random media, secondary radiation sources, numerical solutions, Time Reversal Mirror, finite difference schemes.
Mots-clés : wave propagation
@article{SEMR_2022_19_2_a43,
     author = {G. Reshetova and A. Galaktionova},
     title = {Reconstruction of subsurface scattering objects by the {Time} {Reversal} {Mirror}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {517--527},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a43/}
}
TY  - JOUR
AU  - G. Reshetova
AU  - A. Galaktionova
TI  - Reconstruction of subsurface scattering objects by the Time Reversal Mirror
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 517
EP  - 527
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a43/
LA  - en
ID  - SEMR_2022_19_2_a43
ER  - 
%0 Journal Article
%A G. Reshetova
%A A. Galaktionova
%T Reconstruction of subsurface scattering objects by the Time Reversal Mirror
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 517-527
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a43/
%G en
%F SEMR_2022_19_2_a43
G. Reshetova; A. Galaktionova. Reconstruction of subsurface scattering objects by the Time Reversal Mirror. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 517-527. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a43/

[1] D. Givoli, “Time reversal as a computational tool in acoustics and elastodynamics”, J. Comput. Acoust., 22:3 (2014), 1430001 | DOI | MR | Zbl

[2] M. Fink, F. Wu, D. Cassereau, R. Mallart, “Imaging through inhomogeneous media using time reversal mirrors”, Sixteenth International Symposium on Ultrasonic Imaging and Tissue Characterization (June 3-5, 1991, Arlington, VA), Ultrasonic Imaging, 13, no. 2, 1991, 199 | DOI

[3] M. Fink, “Time reversal in acoustics”, Contemp. Phys., 37:2 (1996), 95–109 | DOI

[4] M. Fink, “Time reversed acoustics”, Phys. Today, 50:3 (1997), 34–40 | DOI

[5] M. Fink, G. Montaldo, M. Tanter, “Time-reversal acoustics in biomedical engineering”, Annu. Rev. Biomed. Eng., 5 (2003), 465–497 | DOI

[6] M. Fink, C. Prada, “Acoustic time-reversal mirrors”, Inv. Probl., 17:1 (2001), R1–R38 | DOI | Zbl

[7] D. Komatitsch, R. Martin, “An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation”, Geophysics, 72:5 (2007), sm155–sm167 | DOI

[8] A.R. Levander, “Fourth-order finite-difference P-SV seismograms”, Geophysics, 53:11 (1988), 1425–1436 | DOI

[9] M. Protasov, G. Reshetova, V. Tcheverda, “Fracture detection by Gaussian beam imaging of seismic data and image spectrum analysis”, Geophysical Prospecting, 64:1 (2016), 68–82 | DOI | MR

[10] G.V. Reshetova, A.V. Anchugov, “Digital core: simulation of acoustic emission in order to localize its sources by the method of wave field reversal in reverse time”, Geology and geophysics, 62:4 (2021), 597–609

[11] J. Virieux, “P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 51:4 (1986), 889–901 | DOI

[12] K. Wapenaar, J. Thorbecke, “Review paper: Virtual sources and their responses, Part I: Time-reversal acoustics and seismic interferometry”, Geophysical Prospecting, 65:6 (2017), 1411–1429 | DOI

[13] Novosibirsk Supercomputer Center of SB RAS, http://www.sscc.icmmg.nsc.ru