On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1015-1037.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with a nonlinear system of partial differential equations with parameters and the random external force. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The stationary measures for the Markov semigroup defined by the solutions of the Cauchy problem for this problem is considered. One parameter of the system is highlighted – the coefficient of kinematic viscosity. The sufficient conditions on the random right-hand side and the other param-ters are derived for the existence of a limiting nontrivial point for any sequence of the stationary measures for this system when any sequence of the kinematic viscosity coefficients goes to zero. As it is well known, this coefficient in practice is extremely small. A number of integral properties are proved for the limiting measure. In addition, these results are obtained for one similar baroclinic atmosphere system.
Keywords: baroclinic atmosphere, Lorenz model, random external force, stationary measure
Mots-clés : inviscid limit.
@article{SEMR_2022_19_2_a42,
     author = {Yu. Yu. Klevtsova},
     title = {On the inviscid limit of stationary measures for the stochastic system of the {Lorenz} model for a baroclinic atmosphere},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1015--1037},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a42/}
}
TY  - JOUR
AU  - Yu. Yu. Klevtsova
TI  - On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 1015
EP  - 1037
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a42/
LA  - en
ID  - SEMR_2022_19_2_a42
ER  - 
%0 Journal Article
%A Yu. Yu. Klevtsova
%T On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 1015-1037
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a42/
%G en
%F SEMR_2022_19_2_a42
Yu. Yu. Klevtsova. On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1015-1037. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a42/

[1] E.N. Lorenz, “Energy and numerical weather prediction”, Tellus, 12:4 (1960), 364–373 | DOI

[2] Yu.Yu. Klevtsova, “Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere”, Sb. Math., 203:10 (2012), 1490–1517 | DOI | MR | Zbl

[3] Yu.Yu. Klevtsova, “On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 204:9 (2013), 1307–1331 | DOI | MR | Zbl

[4] Yu.Yu. Klevtsova, “The uniqueness of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 206:3 (2015), 421–469 | DOI | MR | Zbl

[5] Yu.Yu. Klevtsova, “On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 208:7 (2017), 929–976 | DOI | MR | Zbl

[6] S. Kuksin, A. Maiocchi, “The limit of small Rossby numbers for randomly forced quasi-geostrophic equation on $\beta$-plane”, Nonlinearity, 28:7 (2015), 2319–2341 | DOI | MR | Zbl

[7] P.-M. Boulvard, “Mixing for the primitive equations under bounded non-degenerate noise”, Stoch. Partial Differ. Equ., Anal. Comput., 10:1 (2022), 126–159 | MR | Zbl

[8] J. Duan, B. Goldys, “Ergodicity of stochastically forced large scale geophysical flows”, Int. J. Math. Math. Sci., 28:6 (2001), 313–320 | DOI | MR | Zbl

[9] Yu.N. Skiba, “Spectral approximation in the numerical stability study of nondivergent viscous flows on a sphere”, Numer. Methods Partial Differential Equations, 14:2 (1998), 143–157 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[10] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge etc., 1992 | MR | Zbl

[11] S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Math., 194, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl

[12] P. Billingsley, Convergence of probability mesures, Wiley, New York etc, 1968 | MR | Zbl

[13] A.N. Shiryaev, Probability, Graduate Texts in Mathematics, 95, 2nd ed., Springer-Verlag, New York, 1996 | DOI | MR

[14] Yu.N. Skiba, Mathematical problems of the dynamics of incompressible fluid on a rotating sphere, Springer, Cham, 2017 | MR | Zbl

[15] V.M. Kadets, A course in functional analysis and measure theory, Springer, Cham, 2018 | MR | Zbl

[16] R.M. Dudley, Real analysis and probability, Cambridge Studies in Advanced Mathematics, 74, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[17] N. Dunford, J.T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York–London, 1958 | MR | Zbl

[18] N.N. Vakhania, V.I. Tarieladze, S.A. Chobanyan, Probability distributions on Banach spaces, Math. Appl. (Soviet Ser.), 14, D. Reidel Publishing Co., Dordrecht, 1987 | MR | Zbl

[19] J. Neveu, Mathematical foundations of the calculus of probability, Holden-Day, Inc., San Francisco, 1965 | MR | Zbl

[20] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Springer-Verlag, Berlin etc, 1991 | MR | Zbl

[21] A.N. Kolmogorov, S.V. Fomin, Elements of the theory of functions and functional analysis, v. 2, Measure. The Lebesgue integral. Hilbert space, Graylock Press, Albany, 1961 | MR | Zbl

[22] M.I. Vishik, A.V. Fursikov, Mathematical problems of statistical hydromechanics, Mathematics and Its Applications (Soviet Series), 9, Kluwer Academic Publishers, Dordrecht etc., 1988 | MR | Zbl

[23] V.P. Dymnikov, A.N. Filatov, Mathematics of climate modeling, Birkhäuser, Boston, 1997 | MR | Zbl

[24] A.S. Gorelov, “The dimension of an attractor of a two-layer baroclinic model”, Dokl. Akad. Nauk, 342:1 (1995), 101–104 | MR