Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a42, author = {Yu. Yu. Klevtsova}, title = {On the inviscid limit of stationary measures for the stochastic system of the {Lorenz} model for a baroclinic atmosphere}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1015--1037}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a42/} }
TY - JOUR AU - Yu. Yu. Klevtsova TI - On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 1015 EP - 1037 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a42/ LA - en ID - SEMR_2022_19_2_a42 ER -
%0 Journal Article %A Yu. Yu. Klevtsova %T On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 1015-1037 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a42/ %G en %F SEMR_2022_19_2_a42
Yu. Yu. Klevtsova. On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1015-1037. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a42/
[1] E.N. Lorenz, “Energy and numerical weather prediction”, Tellus, 12:4 (1960), 364–373 | DOI
[2] Yu.Yu. Klevtsova, “Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere”, Sb. Math., 203:10 (2012), 1490–1517 | DOI | MR | Zbl
[3] Yu.Yu. Klevtsova, “On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 204:9 (2013), 1307–1331 | DOI | MR | Zbl
[4] Yu.Yu. Klevtsova, “The uniqueness of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 206:3 (2015), 421–469 | DOI | MR | Zbl
[5] Yu.Yu. Klevtsova, “On the rate of convergence as $t\to+\infty$ of the distributions of solutions to the stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 208:7 (2017), 929–976 | DOI | MR | Zbl
[6] S. Kuksin, A. Maiocchi, “The limit of small Rossby numbers for randomly forced quasi-geostrophic equation on $\beta$-plane”, Nonlinearity, 28:7 (2015), 2319–2341 | DOI | MR | Zbl
[7] P.-M. Boulvard, “Mixing for the primitive equations under bounded non-degenerate noise”, Stoch. Partial Differ. Equ., Anal. Comput., 10:1 (2022), 126–159 | MR | Zbl
[8] J. Duan, B. Goldys, “Ergodicity of stochastically forced large scale geophysical flows”, Int. J. Math. Math. Sci., 28:6 (2001), 313–320 | DOI | MR | Zbl
[9] Yu.N. Skiba, “Spectral approximation in the numerical stability study of nondivergent viscous flows on a sphere”, Numer. Methods Partial Differential Equations, 14:2 (1998), 143–157 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[10] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge etc., 1992 | MR | Zbl
[11] S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Math., 194, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl
[12] P. Billingsley, Convergence of probability mesures, Wiley, New York etc, 1968 | MR | Zbl
[13] A.N. Shiryaev, Probability, Graduate Texts in Mathematics, 95, 2nd ed., Springer-Verlag, New York, 1996 | DOI | MR
[14] Yu.N. Skiba, Mathematical problems of the dynamics of incompressible fluid on a rotating sphere, Springer, Cham, 2017 | MR | Zbl
[15] V.M. Kadets, A course in functional analysis and measure theory, Springer, Cham, 2018 | MR | Zbl
[16] R.M. Dudley, Real analysis and probability, Cambridge Studies in Advanced Mathematics, 74, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[17] N. Dunford, J.T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York–London, 1958 | MR | Zbl
[18] N.N. Vakhania, V.I. Tarieladze, S.A. Chobanyan, Probability distributions on Banach spaces, Math. Appl. (Soviet Ser.), 14, D. Reidel Publishing Co., Dordrecht, 1987 | MR | Zbl
[19] J. Neveu, Mathematical foundations of the calculus of probability, Holden-Day, Inc., San Francisco, 1965 | MR | Zbl
[20] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Springer-Verlag, Berlin etc, 1991 | MR | Zbl
[21] A.N. Kolmogorov, S.V. Fomin, Elements of the theory of functions and functional analysis, v. 2, Measure. The Lebesgue integral. Hilbert space, Graylock Press, Albany, 1961 | MR | Zbl
[22] M.I. Vishik, A.V. Fursikov, Mathematical problems of statistical hydromechanics, Mathematics and Its Applications (Soviet Series), 9, Kluwer Academic Publishers, Dordrecht etc., 1988 | MR | Zbl
[23] V.P. Dymnikov, A.N. Filatov, Mathematics of climate modeling, Birkhäuser, Boston, 1997 | MR | Zbl
[24] A.S. Gorelov, “The dimension of an attractor of a two-layer baroclinic model”, Dokl. Akad. Nauk, 342:1 (1995), 101–104 | MR