On recognition of~$A_6\times A_6$ by the set of conjugacy class sizes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 762-767

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite group $G$ denote by $N(G)$ the set of conjugacy class sizes of $G$. Recently the following question has been asked: Is it true that for each nonabelian finite simple group $S$ and each $n\in\mathbb{N}$, if the set of class sizes of a finite group $G$ with trivial center is the same as the set of class sizes of the direct power $S^n$, then $G\simeq S^n$? In this paper we approach an answer to this question by proving that $A_6\times A_6$ is uniquely determined by $N(A_6\times A_6)$ among finite groups with trivial center.
Keywords: finite groups, class sizes.
Mots-clés : conjugacy classes
@article{SEMR_2022_19_2_a4,
     author = {V. Panshin},
     title = {On recognition of~$A_6\times A_6$ by the set of conjugacy class sizes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {762--767},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a4/}
}
TY  - JOUR
AU  - V. Panshin
TI  - On recognition of~$A_6\times A_6$ by the set of conjugacy class sizes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 762
EP  - 767
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a4/
LA  - en
ID  - SEMR_2022_19_2_a4
ER  - 
%0 Journal Article
%A V. Panshin
%T On recognition of~$A_6\times A_6$ by the set of conjugacy class sizes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 762-767
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a4/
%G en
%F SEMR_2022_19_2_a4
V. Panshin. On recognition of~$A_6\times A_6$ by the set of conjugacy class sizes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 762-767. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a4/