On directed and finitely partitionable bases for quasi-identities
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 741-746
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that, under certain conditions on a quasivariety, there exists continuum many subquasivarieties of this quasivariety with both finitely partitionable (independent) and directed bases for quasi-identities. We also notice that such a situation is impossible for bases for anti-identities.
Keywords:
quasivariety, basis for quasi-identities.
@article{SEMR_2022_19_2_a3,
author = {A. V. Kravchenko},
title = {On directed and finitely partitionable bases for quasi-identities},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {741--746},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a3/}
}
TY - JOUR AU - A. V. Kravchenko TI - On directed and finitely partitionable bases for quasi-identities JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 741 EP - 746 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a3/ LA - en ID - SEMR_2022_19_2_a3 ER -
A. V. Kravchenko. On directed and finitely partitionable bases for quasi-identities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 741-746. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a3/