Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a21, author = {A. V. Kostin}, title = {On generalizations of {Ptolemy's} theorem on the {Lobachevsky} plane}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {404--414}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a21/} }
A. V. Kostin. On generalizations of Ptolemy's theorem on the Lobachevsky plane. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 404-414. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a21/
[1] T. Kubota, “On the extended Ptolomy's theorem in hyperbolic geometry”, Tôhoku Sc. Rep., 1 (1913), 131–156 | Zbl
[2] P.A. Širokov, “Etudes on the Lobachevskii geometry”, Izvestia Kazan\v{i}, Bull. Soc. phys.-math. (2), 24:1 (1924), 26–32
[3] J. Casey, Plane trigonometry; containing an account of the hyperbolic functions, Hodges, Figgis and Co., Dublin, 1888 | Zbl
[4] N.V. Abrosimov, L.A. Mikaiylova, “Casey's theorem in hyperbolic geometry”, Sib. Èlektron. Mat. Izv., 12 (2015), 354–360 | MR | Zbl
[5] A.V. Kostin, N.N. Kostina, “An interpretation of Casey's theorem and its hyperbolic analogue”, Sib. Èlektron. Mat. Izv., 13 (2016), 242–251 | MR | Zbl
[6] H. Maehara, H. Martini, “Bipartite sets of spheres and Casey-type theorems”, Results Math., 74:1 (2019), 47 | DOI | MR | Zbl
[7] N.V. Abrosimov, V.V. Aseev, “Generalizations of Casey's theorem for higher dimensions”, Lobachevskii J. Math., 39:1 (2018), 1–12 | DOI | MR | Zbl
[8] N.S. Astapov, I.S. Astapov, “The variety of generalizations of the Ptolemy's theorem”, Dal'nevost. Mat. Zh., 19:2 (2019), 129–137 | MR | Zbl
[9] B.A. Rosenfel'd, Non-Euclidean spaces, Nauka, M., 1969 | MR | Zbl
[10] I.M. Yaglom, “Somplex numbers and their application to the geometry”, Mat. Prosveschenie, 6 (1961), 61–106 | MR | Zbl
[11] M.A. Mikenberg, The Laguerre geometry and its analogue, Dissertaciia kand. f.-m. nauk, Kazan, 1994
[12] Z.A. Skopets, I.M.Yaglom, Laguerre transformations of the Lobachevskii plane and Möbius transformations of a dual variable. Problems of the differential and non-Euclidean geometries, Izdatelstvo MGPI, M., 1965 | MR