On generalizations of Ptolemy's theorem on the Lobachevsky plane
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 404-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers some variations on the theme of Ptolemy's theorem and its generalizations on the Lobachevsky plane. Some of the statements are hyperbolic analogues of the Euclidean theorems in terms of the figures involved in them. Other statements describe formal relations coinciding with Euclidean ones, but connecting other types of figures specific to the Lobachevsky plane. One of the generalizations is Fuhrmann's theorem — an analog of Ptolemy's theorem for an inscribed hexagon. If a hexagon on the Lobachevsky plane is inscribed in a circle, then the proof of the corresponding statement is not required: on the hyperbolic plane of curvature equal to minus one, it is obtained by standard substitution instead of the lengths of the segments of doubled hyperbolic sines by half their lengths. This article initially proves this statement for a hexagon inscribed in a horocycle and one branch of an equidistant line. In these cases, the sides and diagonals of the hexagon are related by the same relationship as for a hexagon inscribed in a circle. Then the cases are considered when from one to three vertices of the inscribed hexagon lie on the second branch of the equidistant line. In these cases, the analytical notation of the relations in Fuhrmann's theorem differs from the previous ones by replacing some hyperbolic sines of half the lengths of segments by hyperbolic cosines. In addition, analogues of Fuhrmann's theorem for six circles tangent to one fixed circle or horocycle are considered.
Keywords: Ptolemy's theorem, Casey's theorem, Fuhrmann's theorem, Lobachevsky plane.
@article{SEMR_2022_19_2_a21,
     author = {A. V. Kostin},
     title = {On generalizations of {Ptolemy's} theorem on the {Lobachevsky} plane},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {404--414},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a21/}
}
TY  - JOUR
AU  - A. V. Kostin
TI  - On generalizations of Ptolemy's theorem on the Lobachevsky plane
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 404
EP  - 414
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a21/
LA  - ru
ID  - SEMR_2022_19_2_a21
ER  - 
%0 Journal Article
%A A. V. Kostin
%T On generalizations of Ptolemy's theorem on the Lobachevsky plane
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 404-414
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a21/
%G ru
%F SEMR_2022_19_2_a21
A. V. Kostin. On generalizations of Ptolemy's theorem on the Lobachevsky plane. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 404-414. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a21/

[1] T. Kubota, “On the extended Ptolomy's theorem in hyperbolic geometry”, Tôhoku Sc. Rep., 1 (1913), 131–156 | Zbl

[2] P.A. Širokov, “Etudes on the Lobachevskii geometry”, Izvestia Kazan\v{i}, Bull. Soc. phys.-math. (2), 24:1 (1924), 26–32

[3] J. Casey, Plane trigonometry; containing an account of the hyperbolic functions, Hodges, Figgis and Co., Dublin, 1888 | Zbl

[4] N.V. Abrosimov, L.A. Mikaiylova, “Casey's theorem in hyperbolic geometry”, Sib. Èlektron. Mat. Izv., 12 (2015), 354–360 | MR | Zbl

[5] A.V. Kostin, N.N. Kostina, “An interpretation of Casey's theorem and its hyperbolic analogue”, Sib. Èlektron. Mat. Izv., 13 (2016), 242–251 | MR | Zbl

[6] H. Maehara, H. Martini, “Bipartite sets of spheres and Casey-type theorems”, Results Math., 74:1 (2019), 47 | DOI | MR | Zbl

[7] N.V. Abrosimov, V.V. Aseev, “Generalizations of Casey's theorem for higher dimensions”, Lobachevskii J. Math., 39:1 (2018), 1–12 | DOI | MR | Zbl

[8] N.S. Astapov, I.S. Astapov, “The variety of generalizations of the Ptolemy's theorem”, Dal'nevost. Mat. Zh., 19:2 (2019), 129–137 | MR | Zbl

[9] B.A. Rosenfel'd, Non-Euclidean spaces, Nauka, M., 1969 | MR | Zbl

[10] I.M. Yaglom, “Somplex numbers and their application to the geometry”, Mat. Prosveschenie, 6 (1961), 61–106 | MR | Zbl

[11] M.A. Mikenberg, The Laguerre geometry and its analogue, Dissertaciia kand. f.-m. nauk, Kazan, 1994

[12] Z.A. Skopets, I.M.Yaglom, Laguerre transformations of the Lobachevskii plane and Möbius transformations of a dual variable. Problems of the differential and non-Euclidean geometries, Izdatelstvo MGPI, M., 1965 | MR