Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a20, author = {A. V. Lebedev and A. V. Nazmutdinova}, title = {Mean number of joint jumps of multivariate extremes of particle scores in {Markov} branching processes. {Clayton} copula case}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {972--983}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a20/} }
TY - JOUR AU - A. V. Lebedev AU - A. V. Nazmutdinova TI - Mean number of joint jumps of multivariate extremes of particle scores in Markov branching processes. Clayton copula case JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 972 EP - 983 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a20/ LA - ru ID - SEMR_2022_19_2_a20 ER -
%0 Journal Article %A A. V. Lebedev %A A. V. Nazmutdinova %T Mean number of joint jumps of multivariate extremes of particle scores in Markov branching processes. Clayton copula case %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 972-983 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a20/ %G ru %F SEMR_2022_19_2_a20
A. V. Lebedev; A. V. Nazmutdinova. Mean number of joint jumps of multivariate extremes of particle scores in Markov branching processes. Clayton copula case. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 972-983. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a20/
[1] B.C. Arnold, J.A. Villaseñor, “The tallest man in the world”, Statistical theory and applications, Papers in honor of Herbert A. David, eds. Nagaraja H.N. (ed.) et al., Springer, Berlin, 1996, 81–88 | DOI | MR | Zbl
[2] A.G. Pakes, “Extreme order statistics on Galton-Watson trees”, Metrika, 47:2 (1998), 95–117 | DOI | MR | Zbl
[3] T. Harris, The theory of branching processes, Springer-Verlag, Berlin etc, 1963 | MR | Zbl
[4] M.C.K. Yang, “On the distribution of the inter-record times in an increasing population”, J. Appl. Probab., 12:1 (1975), 148–154 | DOI | MR | Zbl
[5] A.V. Lebedev, “Multivariate extremes of random scores of particles in branching processes with max-linear heredity”, Math. Notes, 105:3 (2019), 376–384 | DOI | MR | Zbl
[6] A.V. Lebedev, “Records and increases of multivariate extremes of random particle scores in supercritical branching processes with max-linear heredity”, Theory Probab. Appl., 67:2 (2022), 310–317 | DOI | MR | Zbl
[7] A.V. Lebedev, “Maxima of random particles scores in Markov branching processes with continuous time”, Extremes, 11:2 (2008), 203–216 | DOI | MR | Zbl
[8] A.V. Karpenko, “New properties of bivariate maxima of particle scores in branching processes with continuous time”, Mosc. Univ. Math. Bull., 75:1 (2020), 16–21 | DOI | MR | Zbl
[9] A.V. Karpenko, “Properties of two-dimensional maxima of particle scores in critical branching processes with immigration and continuous time”, Math. Notes, 109:2 (2021), 231–240 | DOI | MR | Zbl
[10] A.V. Nazmutdinova, “Multivariate records of particle scores in supercticital branching processes with continuous time”, Mosc. Univ. Math. Bull., 77:6 (2022), 14–20 | MR
[11] I. Bayramoglu, “On the records of multivariate random sequences”, Metrika, 79:6 (2016), 725–747 | DOI | MR | Zbl
[12] P. Barbe, C. Genest, K. Ghoudi, B. Rémillard, “On Kendall's process”, J. Multivariate Anal., 58:2 (1996), 197–229 | DOI | MR | Zbl
[13] R. Nelsen, An introduction to copulas, Springer, New York, 2006 | MR | Zbl
[14] E.W. Weisstein, Polygamma Function, https://mathworld.wolfram.com/PolygammaFunction.html
[15] I.S. Gradshtein, I.M. Ryzhik, Table of integrals, series, and products, Fizmatgiz, M., 1963 ; Academic Press, New York, 1980 | MR | Zbl