Mean number of joint jumps of multivariate extremes of particle scores in Markov branching processes. Clayton copula case
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 972-983.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the long-term studies of the authors on the extremes of random particles scores in branching processes. A theorem is proved that allows one to find the mean number of joint jumps of multivariate maxima of particle scores in Markov branching processes with continuous time, including processes with immigration. Examples are analyzed where the dependence of scores is described by Clayton copula.
Keywords: Markov branching processes, branching processes with immigration, multivariate extremes, Clayton copula.
@article{SEMR_2022_19_2_a20,
     author = {A. V. Lebedev and A. V. Nazmutdinova},
     title = {Mean number of joint jumps of multivariate extremes of particle scores in {Markov} branching processes. {Clayton} copula case},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {972--983},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a20/}
}
TY  - JOUR
AU  - A. V. Lebedev
AU  - A. V. Nazmutdinova
TI  - Mean number of joint jumps of multivariate extremes of particle scores in Markov branching processes. Clayton copula case
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 972
EP  - 983
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a20/
LA  - ru
ID  - SEMR_2022_19_2_a20
ER  - 
%0 Journal Article
%A A. V. Lebedev
%A A. V. Nazmutdinova
%T Mean number of joint jumps of multivariate extremes of particle scores in Markov branching processes. Clayton copula case
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 972-983
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a20/
%G ru
%F SEMR_2022_19_2_a20
A. V. Lebedev; A. V. Nazmutdinova. Mean number of joint jumps of multivariate extremes of particle scores in Markov branching processes. Clayton copula case. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 972-983. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a20/

[1] B.C. Arnold, J.A. Villaseñor, “The tallest man in the world”, Statistical theory and applications, Papers in honor of Herbert A. David, eds. Nagaraja H.N. (ed.) et al., Springer, Berlin, 1996, 81–88 | DOI | MR | Zbl

[2] A.G. Pakes, “Extreme order statistics on Galton-Watson trees”, Metrika, 47:2 (1998), 95–117 | DOI | MR | Zbl

[3] T. Harris, The theory of branching processes, Springer-Verlag, Berlin etc, 1963 | MR | Zbl

[4] M.C.K. Yang, “On the distribution of the inter-record times in an increasing population”, J. Appl. Probab., 12:1 (1975), 148–154 | DOI | MR | Zbl

[5] A.V. Lebedev, “Multivariate extremes of random scores of particles in branching processes with max-linear heredity”, Math. Notes, 105:3 (2019), 376–384 | DOI | MR | Zbl

[6] A.V. Lebedev, “Records and increases of multivariate extremes of random particle scores in supercritical branching processes with max-linear heredity”, Theory Probab. Appl., 67:2 (2022), 310–317 | DOI | MR | Zbl

[7] A.V. Lebedev, “Maxima of random particles scores in Markov branching processes with continuous time”, Extremes, 11:2 (2008), 203–216 | DOI | MR | Zbl

[8] A.V. Karpenko, “New properties of bivariate maxima of particle scores in branching processes with continuous time”, Mosc. Univ. Math. Bull., 75:1 (2020), 16–21 | DOI | MR | Zbl

[9] A.V. Karpenko, “Properties of two-dimensional maxima of particle scores in critical branching processes with immigration and continuous time”, Math. Notes, 109:2 (2021), 231–240 | DOI | MR | Zbl

[10] A.V. Nazmutdinova, “Multivariate records of particle scores in supercticital branching processes with continuous time”, Mosc. Univ. Math. Bull., 77:6 (2022), 14–20 | MR

[11] I. Bayramoglu, “On the records of multivariate random sequences”, Metrika, 79:6 (2016), 725–747 | DOI | MR | Zbl

[12] P. Barbe, C. Genest, K. Ghoudi, B. Rémillard, “On Kendall's process”, J. Multivariate Anal., 58:2 (1996), 197–229 | DOI | MR | Zbl

[13] R. Nelsen, An introduction to copulas, Springer, New York, 2006 | MR | Zbl

[14] E.W. Weisstein, Polygamma Function, https://mathworld.wolfram.com/PolygammaFunction.html

[15] I.S. Gradshtein, I.M. Ryzhik, Table of integrals, series, and products, Fizmatgiz, M., 1963 ; Academic Press, New York, 1980 | MR | Zbl