Inequalities for the average first exit time from the strip for the Levy process
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 852-860.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study first exit time from a strip for a homogeneous stochastic process with independent increments (the Levy process). Two-sided inequalities are found for the average of this exit time under various conditions on the process.
Keywords: stochastic Levy process, first exit time, boundary crossing problem, ruin probability.
@article{SEMR_2022_19_2_a19,
     author = {V. I. Lotov and V. R. Khodzhibaev},
     title = {Inequalities for the average first exit time from the strip for the {Levy} process},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {852--860},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a19/}
}
TY  - JOUR
AU  - V. I. Lotov
AU  - V. R. Khodzhibaev
TI  - Inequalities for the average first exit time from the strip for the Levy process
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 852
EP  - 860
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a19/
LA  - ru
ID  - SEMR_2022_19_2_a19
ER  - 
%0 Journal Article
%A V. I. Lotov
%A V. R. Khodzhibaev
%T Inequalities for the average first exit time from the strip for the Levy process
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 852-860
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a19/
%G ru
%F SEMR_2022_19_2_a19
V. I. Lotov; V. R. Khodzhibaev. Inequalities for the average first exit time from the strip for the Levy process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 852-860. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a19/

[1] V.I. Lotov, “Approximation of the expectation of the first exit time from an interval for a random walk”, Sib. Math. J., 57:1 (2016), 86–92 | DOI | MR | Zbl

[2] V.I. Lotov, “Asymptotic expansions for a sequential likelihood ratio test”, Theory Probab. Appl., 32:1 (1987), 57–67 | DOI | MR | Zbl

[3] B.A. Rogozin, “On distributions of functionals related to boundary problems for processes with independent increments”, Theor. Probab. Appl., 11:4 (1966), 580–591 | DOI | MR | Zbl

[4] B.A. Rogozin, “Distribution of the maximum of a process with independent increments”, Sib. Math. J., 10 (1969), 989–1010 | DOI | MR | Zbl

[5] B.A. Rogozin, “Local behavior of processes with independent increments”, Theor. Probab. Appl., 13 (1968), 482–486 | DOI | MR | Zbl

[6] V.S. Koroljuk, V.N. Suprun, V.M. Shurenkov, “Method of potential in boundary problems for processes with independent increments and jumps of the same sign”, Theory Probab. Appl., 21:2 (1977), 243–249 | DOI | MR | Zbl

[7] V.R. Khodzhibaev, “Asimptotic representations for characteristics of exit from an interval for stochastic processes with independent increments”, Sib. Adv. Math., 7:3 (1997), 75–86 | MR | Zbl

[8] V.I. Lotov, V.R. Khodjibaev, “On limit theorems for the first exit time from a strip for stochastic processes. I”, Sib. Adv. Math., 8:3 (1998), 90–113 | MR | Zbl

[9] V.I. Lotov, “Inequalities for the average exit time of a random walk from an interval”, Izv. Math., 85:4 (2021), 745–754 | DOI | MR | Zbl

[10] V.I. Lotov, V.R. Khodjibayev, “Inequalities in a two-sided boundary crossing problem for stochastic processes”, Sib. Math. J., 62:3 (2021), 455–461 | DOI | MR | Zbl

[11] A.A. Mogul'skii, “On the size of the first jump for a process with independent increments”, Theory Probab. Appl., 21 (1977), 470–481 | DOI | Zbl