Study of systems of equations over various classes of finite matroids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1094-1102

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, it is proved that the problem of checking compatibility of a finite system of equations over a matroid of rank not exeeding $k$ is $\mathcal{NP}$-complete for ${k \geqslant 2}$. Moreover, it is proved that the problem of checking compatibility of a finite system of equations over a $k$-uniform matroid is also $\mathcal{NP}$-complete for ${k \geqslant 2}$, and the problem of checking compatibility of a finite system of equations over a partition matroid of rank not exeeding $k$ is polynomially solvable for ${k=2}$ and $\mathcal{NP}$-complete for ${k \geqslant 3}$.
Keywords: graph, matroid, system of equations, computational complexity.
@article{SEMR_2022_19_2_a16,
     author = {A. V. Ilev},
     title = {Study of systems of equations over various classes of finite matroids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1094--1102},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a16/}
}
TY  - JOUR
AU  - A. V. Ilev
TI  - Study of systems of equations over various classes of finite matroids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 1094
EP  - 1102
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a16/
LA  - ru
ID  - SEMR_2022_19_2_a16
ER  - 
%0 Journal Article
%A A. V. Ilev
%T Study of systems of equations over various classes of finite matroids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 1094-1102
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a16/
%G ru
%F SEMR_2022_19_2_a16
A. V. Ilev. Study of systems of equations over various classes of finite matroids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 1094-1102. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a16/