Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_2_a11, author = {M. I. Fraiman and V. E. Troitsky}, title = {Reidemeister classes in wreath products of abelian groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {880--888}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a11/} }
TY - JOUR AU - M. I. Fraiman AU - V. E. Troitsky TI - Reidemeister classes in wreath products of abelian groups JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 880 EP - 888 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a11/ LA - ru ID - SEMR_2022_19_2_a11 ER -
M. I. Fraiman; V. E. Troitsky. Reidemeister classes in wreath products of abelian groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 880-888. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a11/
[1] V.G. Bardakov, T.R. Nasybullov, M.V. Neshchadim, “Twisted conjugacy classes of the unit element”, Sib. Math. J., 54:1 (2013), 10–21 | DOI | MR | Zbl
[2] M.J. Curran, “Automorphisms of semidirect products”, Math. Proc. R. Ir. Acad., 108A:2 (2008), 199–204 | DOI | MR | Zbl
[3] K. Dekimpe, D. Gon{ç}alves, “The $R_\infty$ property for free groups, free nilpotent groups and free solvable groups”, Bull. Lond. Math. Soc., 46:4 (2014), 737–746 | DOI | MR | Zbl
[4] A. Fel'shtyn, Dynamical zeta functions, Nielsen theory and Reidemeister torsion, Mem. Am. Math. Soc., 699, Amer. Math. Soc., Providence, 2000 | Zbl
[5] A. Fel'shtyn, R. Hill, “Dynamical zeta functions, Nielsen theory and Reidemeister torsion”, Nielsen theory and dynamical systems, AMS-IMS-SIAM summer research conference (June 20-26, 1992, South Hadley, MA (USA)), eds. McCord Christopher K., 43–68 | MR | Zbl
[6] A. Fel'shtyn, R. Hill, “The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion”, $K$-Theory, 8:4 (1994), 367–393 | DOI | MR | Zbl
[7] A. Fel'shtyn, Yu. Leonov, E. Troitsky, “Twisted conjugacy classes in saturated weakly branch groups”, Geom. Dedicata, 134 (2008), 61–73 | DOI | MR | Zbl
[8] A. Fel'shtyn, N. Luchnikov, E. Troitsky, “Reidemeister classes and twisted inner representations”, Russ. J. Math. Phys., 22:3 (2015), 301–306 | DOI | MR | Zbl
[9] A. Fel'shtyn, T. Nasybullov, “The $R_{\infty}$ and ${S}_{\infty}$ properties for linear algebraic groups”, J. Group Theory, 19:5 (2016), 901–921 | DOI | MR | Zbl
[10] A. Fel'shtyn, E. Troitsky, “Pólya-Carlson dichotomy for dynamical zeta functions and a twisted Burnside-Frobenius theorem”, Russ. J. Math. Phys., 28:4 (2021), 455–463 | DOI | MR | Zbl
[11] A. Fel'shtyn, E. Troitsky, “Twisted Burnside-Frobenius theory for discrete groups”, J. Reine Angew. Math., 613 (2007), 193–210 | MR | Zbl
[12] A. Fel'shtyn, E. Troitsky, “Aspects of the property $R_\infty$”, J. Group Theory, 18:6 (2015), 1021–1034 | DOI | MR | Zbl
[13] A. Fel'shtyn, E. Troitsky, A. Vershik, “Twisted Burnside theorem for type II${}_1$ groups: an example”, Math. Res. Lett., 13:5-6 (2006), 719–728 | DOI | MR | Zbl
[14] A. Fel'shtyn, E. Troitsky, M. Zi{ȩ}tek, “New zeta functions of Reidemeister type and the twisted Burnside-Frobenius theory”, Russ. J. Math. Phys., 27:2 (2020), 199–211 | DOI | MR | Zbl
[15] M.I. Fraiman, “Twisted Burnside-Frobenius theorem and $R_\infty$-property for lamplighter-type groups”, Sib. Èlectron. Mat. Izv., 17 (2020), 890–898 | DOI | MR | Zbl
[16] D. Gon{ç}alves, “Coincidence Reidemeister classes on nilmanifolds and nilpotent fibrations”, Topology Appl., 83:3 (1998), 169–186 | DOI | MR | Zbl
[17] D. Gon{ç}alves, P. Wong, “Twisted conjugacy classes in wreath products”, Int. J. Algebra Comput., 16:5 (2006), 875–886 | DOI | MR | Zbl
[18] D. Gon{ç}alves, P. Wong, “Twisted conjugacy classes in nilpotent groups”, J. Reine Angew. Math., 633 (2009), 11–27 | MR | Zbl
[19] E. Jabara, “Automorphisms with finite Reidemeister number in residually finite groups”, J. Algebra, 320:10 (2008), 3671–3679 | DOI | MR | Zbl
[20] J. Kuzmanovich, A. Pavlichenkov, “Finite groups of matrices whose entries are integers”, Am. Math. Mon., 109:2 (2002), 173–186 | DOI | MR | Zbl
[21] T. Nasybullov, “Chevalley groups of types $B_n$, $C_n$, $D_n$ over certain fields do not possess the $R_\infty$-property”, Topol. Methods Nonlinear Anal., 56:2 (2020), 401–417 | MR | Zbl
[22] M. Newman, Integral matrices, Academic Press, New York-London, 1972 | MR | Zbl
[23] V. Roman'kov, “Twisted conjugacy classes in nilpotent groups”, J. Pure Appl. Algebra, 215:4 (2011), 664–671 | DOI | MR | Zbl
[24] M. Stein, J. Taback, P. Wong, “Automorphisms of higher rank lamplighter groups”, Int. J. Algebra Comput., 25:8 (2015), 1275–1299 | DOI | MR | Zbl
[25] J. Taback, P. Wong, “The geometry of twisted conjugacy classes in wreath products”, Geometry, rigidity, and group actions, Chicago Lectures in Math., eds. Farb Benson (ed.) et al., Univ. Chicago Press, Chicago, 2011, 561–587 | MR | Zbl
[26] E.V. Troitsky, “Reidemeister classes in some weakly branch groups”, Russ. J. Math. Phys., 26:1 (2019), 122–129 | DOI | MR | Zbl
[27] E. Troitsky, “Reidemeister classes in lamplighter-type groups”, Comm. Algebra, 47:4 (2019), 1731–1741 | DOI | MR | Zbl