Reidemeister classes in wreath products of abelian groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 880-888

Voir la notice de l'article provenant de la source Math-Net.Ru

Among restricted wreath products $G\wr \mathbb{Z}^k $, where $G$ is a finite abelian group, we find three large classes of groups admitting an automorphism $\varphi$ with finite Reidemeister number $R(\varphi)$ (number of $\varphi$-twisted conjugacy classes). In other words, groups from these classes do not have the $R_\infty$ property. Moreover, we prove that if $\varphi$ is a finite order automorphism of $G\wr \mathbb{Z}^k$ with $R(\varphi)\infty$, then $R(\varphi)$ is equal to the number of fixed points of the map $[\rho]\mapsto [\rho\circ \varphi]$ defined on the set of equivalence classes of finite dimensional irreducible unitary representations of $G\wr \mathbb{Z}^k$.
Keywords: Reidemeister number, twisted conjugacy class, Burnside-Frobenius theorem, unitary dual, finite-dimensional representation.
@article{SEMR_2022_19_2_a11,
     author = {M. I. Fraiman and V. E. Troitsky},
     title = {Reidemeister classes in wreath products of abelian groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {880--888},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a11/}
}
TY  - JOUR
AU  - M. I. Fraiman
AU  - V. E. Troitsky
TI  - Reidemeister classes in wreath products of abelian groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 880
EP  - 888
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a11/
LA  - ru
ID  - SEMR_2022_19_2_a11
ER  - 
%0 Journal Article
%A M. I. Fraiman
%A V. E. Troitsky
%T Reidemeister classes in wreath products of abelian groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 880-888
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a11/
%G ru
%F SEMR_2022_19_2_a11
M. I. Fraiman; V. E. Troitsky. Reidemeister classes in wreath products of abelian groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 2, pp. 880-888. http://geodesic.mathdoc.fr/item/SEMR_2022_19_2_a11/