Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a6, author = {S. G. Kolesnikov and V. M. Leontiev}, title = {One necessary condition for the regularity of a $p$-group and its application to {Wehrfritz's} problem}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {138--163}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a6/} }
TY - JOUR AU - S. G. Kolesnikov AU - V. M. Leontiev TI - One necessary condition for the regularity of a $p$-group and its application to Wehrfritz's problem JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 138 EP - 163 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a6/ LA - en ID - SEMR_2022_19_1_a6 ER -
%0 Journal Article %A S. G. Kolesnikov %A V. M. Leontiev %T One necessary condition for the regularity of a $p$-group and its application to Wehrfritz's problem %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 138-163 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a6/ %G en %F SEMR_2022_19_1_a6
S. G. Kolesnikov; V. M. Leontiev. One necessary condition for the regularity of a $p$-group and its application to Wehrfritz's problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 138-163. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a6/
[1] V.D. Mazurov, E.I. Huhro (eds.), The Kourovka notebook. Unsolved problems in group theory. Including archive of solved problems, 16th ed., Institute of Mathematics, Novosibirsk | MR | Zbl
[2] M. Hall, The theory of groups, Inostrannaya Literatura, M., 1962 | MR | Zbl
[3] Yu.I. Merzlyakov, “Central series and commutator series of matrix groups”, Algebra i Logika Sem., 3:4 (1964), 49–58 | MR
[4] A.V. Yagzhev, “On the regularity of Sylow subgroups of full linear groups over residue rings”, Math. Notes, 56:6 (1994), 1283–1290 | DOI | MR | Zbl
[5] S.G. Kolesnikov, “Regularity of Sylow $p$-subgroups of groups $GL_n(\mathbb{Z}_{p^m})$”, Issl. po matem. analizu i algebre, 3 (2001), 117–124 | MR
[6] S.G. Kolesnikov, “On the regular Sylow $p$-subgroups of Chevalley groups over $\mathbb{Z}_{p^m}$”, Sib. Math. J., 47:6 (2006), 1054–1059 | DOI | MR | Zbl
[7] S.G. Kolesnikov, V.M. Leontiev, G.P. Egorychev, “Two collection formulas”, J. Group Theory, 23:4 (2020), 607–628 | DOI | MR | Zbl
[8] S.G. Kolesnikov, “On necessary conditions for regularity of Sylow p-subgroups of the group $GL_n(\mathbb{Z}_{p^m})$”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 6:2 (2013), 18–25 | Zbl
[9] P. Hall, “A contribution to the theory of groups of prime-power order”, Proc. Lond. Math.Soc., II. Ser., 36 (1933), 29–95 | MR | Zbl
[10] V.M. Leontiev, “On divisibility of some sums of binomial coefficients arising from collection formulas”, J. Sib. Fed. Univ. Math. Phys., 11:5 (2018), 603–614 | DOI | MR | Zbl
[11] V.M. Levchuk, “Commutator structure of some subgroups of Chevalley groups”, Ukr. Math. J., 44:6 (1992), 710–718 | DOI | MR | Zbl
[12] R. Carter, Simple groups of Lie type, Wiley Sons, London etc, 1972 | MR | Zbl
[13] N. Bourbaki, Lie groups and algebras, Mir, M., 1972 | MR | Zbl