One necessary condition for the regularity of a $p$-group and its application to Wehrfritz's problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 138-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a necessary condition for the regularity of a $p$-group in terms of segments of P. Hall's collection formula. For any prime number $p$ such that $(p+2)/3$ is an integer, we prove that a Sylow $p$-subgroup of the group $GL_n(\mathbb{Z}_{p ^ m})$ is not regular if $n \geqslant (p+2)/3$ and $m \geqslant 3.$ We also list all regular Sylow $p$-subgroups of the Chevalley group of type $G_2$ over the ring $\mathbb{Z}_{p^m}.$
Keywords: regular $p$-group, linear group, Chevalley group.
@article{SEMR_2022_19_1_a6,
     author = {S. G. Kolesnikov and V. M. Leontiev},
     title = {One necessary condition for the regularity of a $p$-group and its application to {Wehrfritz's} problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {138--163},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a6/}
}
TY  - JOUR
AU  - S. G. Kolesnikov
AU  - V. M. Leontiev
TI  - One necessary condition for the regularity of a $p$-group and its application to Wehrfritz's problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 138
EP  - 163
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a6/
LA  - en
ID  - SEMR_2022_19_1_a6
ER  - 
%0 Journal Article
%A S. G. Kolesnikov
%A V. M. Leontiev
%T One necessary condition for the regularity of a $p$-group and its application to Wehrfritz's problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 138-163
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a6/
%G en
%F SEMR_2022_19_1_a6
S. G. Kolesnikov; V. M. Leontiev. One necessary condition for the regularity of a $p$-group and its application to Wehrfritz's problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 138-163. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a6/

[1] V.D. Mazurov, E.I. Huhro (eds.), The Kourovka notebook. Unsolved problems in group theory. Including archive of solved problems, 16th ed., Institute of Mathematics, Novosibirsk | MR | Zbl

[2] M. Hall, The theory of groups, Inostrannaya Literatura, M., 1962 | MR | Zbl

[3] Yu.I. Merzlyakov, “Central series and commutator series of matrix groups”, Algebra i Logika Sem., 3:4 (1964), 49–58 | MR

[4] A.V. Yagzhev, “On the regularity of Sylow subgroups of full linear groups over residue rings”, Math. Notes, 56:6 (1994), 1283–1290 | DOI | MR | Zbl

[5] S.G. Kolesnikov, “Regularity of Sylow $p$-subgroups of groups $GL_n(\mathbb{Z}_{p^m})$”, Issl. po matem. analizu i algebre, 3 (2001), 117–124 | MR

[6] S.G. Kolesnikov, “On the regular Sylow $p$-subgroups of Chevalley groups over $\mathbb{Z}_{p^m}$”, Sib. Math. J., 47:6 (2006), 1054–1059 | DOI | MR | Zbl

[7] S.G. Kolesnikov, V.M. Leontiev, G.P. Egorychev, “Two collection formulas”, J. Group Theory, 23:4 (2020), 607–628 | DOI | MR | Zbl

[8] S.G. Kolesnikov, “On necessary conditions for regularity of Sylow p-subgroups of the group $GL_n(\mathbb{Z}_{p^m})$”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 6:2 (2013), 18–25 | Zbl

[9] P. Hall, “A contribution to the theory of groups of prime-power order”, Proc. Lond. Math.Soc., II. Ser., 36 (1933), 29–95 | MR | Zbl

[10] V.M. Leontiev, “On divisibility of some sums of binomial coefficients arising from collection formulas”, J. Sib. Fed. Univ. Math. Phys., 11:5 (2018), 603–614 | DOI | MR | Zbl

[11] V.M. Levchuk, “Commutator structure of some subgroups of Chevalley groups”, Ukr. Math. J., 44:6 (1992), 710–718 | DOI | MR | Zbl

[12] R. Carter, Simple groups of Lie type, Wiley Sons, London etc, 1972 | MR | Zbl

[13] N. Bourbaki, Lie groups and algebras, Mir, M., 1972 | MR | Zbl