One necessary condition for the regularity of a $p$-group and its application to Wehrfritz's problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 138-163

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a necessary condition for the regularity of a $p$-group in terms of segments of P. Hall's collection formula. For any prime number $p$ such that $(p+2)/3$ is an integer, we prove that a Sylow $p$-subgroup of the group $GL_n(\mathbb{Z}_{p ^ m})$ is not regular if $n \geqslant (p+2)/3$ and $m \geqslant 3.$ We also list all regular Sylow $p$-subgroups of the Chevalley group of type $G_2$ over the ring $\mathbb{Z}_{p^m}.$
Keywords: regular $p$-group, linear group, Chevalley group.
@article{SEMR_2022_19_1_a6,
     author = {S. G. Kolesnikov and V. M. Leontiev},
     title = {One necessary condition for the regularity of a $p$-group and its application to {Wehrfritz's} problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {138--163},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a6/}
}
TY  - JOUR
AU  - S. G. Kolesnikov
AU  - V. M. Leontiev
TI  - One necessary condition for the regularity of a $p$-group and its application to Wehrfritz's problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 138
EP  - 163
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a6/
LA  - en
ID  - SEMR_2022_19_1_a6
ER  - 
%0 Journal Article
%A S. G. Kolesnikov
%A V. M. Leontiev
%T One necessary condition for the regularity of a $p$-group and its application to Wehrfritz's problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 138-163
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a6/
%G en
%F SEMR_2022_19_1_a6
S. G. Kolesnikov; V. M. Leontiev. One necessary condition for the regularity of a $p$-group and its application to Wehrfritz's problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 138-163. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a6/