Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a31, author = {N. N. Petrov and N. A. Solov'eva}, title = {Problem of multiple capture of given number of evaders in recurrent differential games}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {371--377}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a31/} }
TY - JOUR AU - N. N. Petrov AU - N. A. Solov'eva TI - Problem of multiple capture of given number of evaders in recurrent differential games JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 371 EP - 377 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a31/ LA - en ID - SEMR_2022_19_1_a31 ER -
%0 Journal Article %A N. N. Petrov %A N. A. Solov'eva %T Problem of multiple capture of given number of evaders in recurrent differential games %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 371-377 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a31/ %G en %F SEMR_2022_19_1_a31
N. N. Petrov; N. A. Solov'eva. Problem of multiple capture of given number of evaders in recurrent differential games. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 371-377. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a31/
[1] R. Isaacs, Differential games, John Wiley and Sons, New York etc, 1965 | MR | Zbl
[2] A.A. Chikrii, Conflict-controlled processes, Naukova dumka, Kiev, 1992 ; Mathematics and its Applications (Dordrecht), 405, Kluwer Academic Publishers, Dordrecht, 1997 | MR | Zbl
[3] N.L. Grigorenko, Mathematical methods of control a few dynamic processes, Moscow State University, M., 1990
[4] A.I. Blagodatskikh, N.N. Petrov, Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009 | MR | Zbl
[5] N.Yu. Satimov, B.B. Rikhsiev, Methods for solving problems of evading encounter in mathematical control theory, Fan, Tashkent, 2000 | MR | Zbl
[6] N.L. Grigorenko, “A game of simple pursuit–evasion for a group of pursuers and one evader”, Vestn. Mosk. Univ., Ser. XV, 1983:1 (1983), 41–47 | MR | Zbl
[7] A.I. Blagodatskikh, Simultaneous multiple capture in the problem on simple pursuit, J. Appl. Math. Mech., 73:1 (2009), 36–40 | DOI | MR | Zbl
[8] S.D. Bopardikar, S. Suri, “$k$-capture in multiagent pursuit evasion, or the lion and the hyenas”, Teor. Comput. Sci., 522 (2014), 13–23 | DOI | MR | Zbl
[9] N.N. Petrov, “Multiple capture in Pontryagin's example with phase constraints”, J. Appl. Math. Mech., 61:5 (1998), 725–732 | DOI | MR
[10] N.N. Petrov, N.A. Solov'eva, “Multiple capture in Pontryagin's recurrent example with phase constraints”, Proc. Steklov Inst. Math., 293, Suppl. 1 (2016), S174–S182 | DOI | MR | Zbl
[11] N. N. Petrov, N.A. Solov'eva, “A multiple capture of an evader in linear recursive differential games”, Trudy Inst. Mat. Mekh., 23, no. 1, 2017, 212–218 | MR
[12] A.I. Blagodatskikh, “Simultaneous multiple capture in a conflict-controlled process”, J. Appl. Math. Mech., 77:3 (2013), 314–320 | DOI | MR | Zbl
[13] N.N. Petrov, V.A. Prokopenko, “On a problem of pursuit of a group of evader”, Differ. Uravn., 23:4 (1987), 725–726 | MR | Zbl
[14] N.N. Petrov, N.A. Solov'eva, “Problem of group pursuit in linear recurrent differential games”, J. Math. Sci., New York, 230:5 (2018), 732–736 | DOI | Zbl
[15] N.N. Petrov, N.A. Solov'eva, “Multiple capture of given number of evaders in linear recurrent differential games”, J. Optim. Theory Appl., 182:1 (2019), 417–429 | DOI | MR | Zbl
[16] V.I. Subov, “The theory of recurrent functions”, Sib. Math. J., 3:4 (1962), 532–560 | MR
[17] M. Hall, Combinatorial theory, Blaisdell Publishing Company, Waltham etc., 1967 | MR | Zbl
[18] N.N. Petrov, A.Ya. Narmanov, “Multiple capture of a given number of evaders in the problem of a simple pursuit”, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki, 28:2 (2018), 193–198 | DOI | MR | Zbl