Problem of multiple capture of given number of evaders in recurrent differential games
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 371-377

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of pursuit by a group of pursuers of a group of evaders with equal opportunities for all participants and geometric restrictions on the control of players is considered. The evaders use program strategies, each pursuer catches no more than one evader. The goal of the pursuers is to catch a given number of evaders, and each evader needs to be caught no less than a certain number of pursuers. In this paper, sufficient conditions are obtained for multiple capture of a given number of evaders.
Keywords: differential game, pursuer, evader, recurrent function.
@article{SEMR_2022_19_1_a31,
     author = {N. N. Petrov and N. A. Solov'eva},
     title = {Problem of multiple capture of given number of evaders in recurrent differential games},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {371--377},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a31/}
}
TY  - JOUR
AU  - N. N. Petrov
AU  - N. A. Solov'eva
TI  - Problem of multiple capture of given number of evaders in recurrent differential games
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 371
EP  - 377
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a31/
LA  - en
ID  - SEMR_2022_19_1_a31
ER  - 
%0 Journal Article
%A N. N. Petrov
%A N. A. Solov'eva
%T Problem of multiple capture of given number of evaders in recurrent differential games
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 371-377
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a31/
%G en
%F SEMR_2022_19_1_a31
N. N. Petrov; N. A. Solov'eva. Problem of multiple capture of given number of evaders in recurrent differential games. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 371-377. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a31/