Optimal discrete Neumann energy in a ball and an annulus
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 109-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove some exact estimates for the discrete Neumann energy of a ball and an annulus in Euclidean space for points located on circles. The proofs are based on dissymmetrization and analysis of the asymptotic behavior of the Dirichlet integral of the potential function.
Keywords: discrete energy, Green function, Neumann function, dissymmetrization.
@article{SEMR_2022_19_1_a29,
     author = {E. G. Prilepkina and A. S. Afanaseva-Grigoreva},
     title = {Optimal discrete {Neumann} energy in a ball and an annulus},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {109--119},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a29/}
}
TY  - JOUR
AU  - E. G. Prilepkina
AU  - A. S. Afanaseva-Grigoreva
TI  - Optimal discrete Neumann energy in a ball and an annulus
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 109
EP  - 119
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a29/
LA  - en
ID  - SEMR_2022_19_1_a29
ER  - 
%0 Journal Article
%A E. G. Prilepkina
%A A. S. Afanaseva-Grigoreva
%T Optimal discrete Neumann energy in a ball and an annulus
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 109-119
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a29/
%G en
%F SEMR_2022_19_1_a29
E. G. Prilepkina; A. S. Afanaseva-Grigoreva. Optimal discrete Neumann energy in a ball and an annulus. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 109-119. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a29/

[1] P. Henrici, Applied and computational complex analysis, v. 3, Wiley Sons, New York etc, 1986 | MR | Zbl

[2] M.A. Sadybekov, B.T. Torebek, B.Kh. Turmetov, “Representation of Green's function of the Neumann problem for a multi-dimensional ball”, Complex Var. Elliptic Equ., 61:1 (2015), 104–123 | DOI | MR | Zbl

[3] J.S. Brauchart, D.P. Hardin, E.B. Saff, “The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N”, Bull. Lond. Math. Soc., 41:4 (2009), 621–633 | DOI | MR | Zbl

[4] S.V. Borodachov, D.P. Hardin, E.B. Saff, Discrete energy on rectifiable sets, Springer, New York, 2019 | MR | Zbl

[5] J.S. Brauchart, D.P. Hardin, E.B. Saff, “The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere”, Contemp. Math., 578, 2012, 31–61 | DOI | MR | Zbl

[6] V.N. Dubinin, “Green energy and extremal decompositions”, Probl. Anal. Issues Anal., 8(26):3 (2019), 38–44 | DOI | MR | Zbl

[7] V.N. Dubinin, E.G. Prilepkina, “Optimal Green energy points on the circles in d-space”, J. Math. Anal. Appl., 499:2 (2021), 125055 | DOI | MR | Zbl

[8] N.S. Landkoff, Foundations of modern potential theory, Springer-Verlag, Berlin-Heidelberg-New York, 1972 | MR | Zbl

[9] Z. Nehari, “Some inequalities in the theory of functions”, Trans. Am. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl

[10] P. Duren, M.M. Schiffer, “Robin functions and energy functionals of multiply connected domains”, Pac. J. Math., 148:2 (1991), 251–273 | DOI | MR | Zbl

[11] V.N. Dubinin, “Quadratic forms involving Green's and Robin functions”, Sb. Math., 200:10 (2009), 1439–1452 | DOI | MR | Zbl

[12] E.G. Prilepkina, “On quadratic forms generated by the Neumann functions”, J. Math. Sci., New York, 207:6 (2015), 909–922 | DOI | MR | Zbl

[13] D.B. Karp, E. Prilepkina, “Reduced modulus with free boundary and its applications”, Ann. Acad. Sci. Fenn., Math., 34:2 (2009), 353–378 | MR | Zbl

[14] K.A. Gulyaeva, S.I. Kalmykov, E.G. Prilepkina, “Extremal decomposition problems in the Euclidean space”, International Journal of Mathematical Analysis, 9:56 (2015), 2763–2773 | DOI

[15] V.N. Dubinin, E.G. Prilepkina, “On the preservation of generalized reduced modulus under some geometric transformations of domains in the plane”, Dal'nevost. Mat. Zh., 6:1-2 (2005), 39–56