Optimal discrete Neumann energy in a ball and an annulus
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 109-119

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove some exact estimates for the discrete Neumann energy of a ball and an annulus in Euclidean space for points located on circles. The proofs are based on dissymmetrization and analysis of the asymptotic behavior of the Dirichlet integral of the potential function.
Keywords: discrete energy, Green function, Neumann function, dissymmetrization.
@article{SEMR_2022_19_1_a29,
     author = {E. G. Prilepkina and A. S. Afanaseva-Grigoreva},
     title = {Optimal discrete {Neumann} energy in a ball and an annulus},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {109--119},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a29/}
}
TY  - JOUR
AU  - E. G. Prilepkina
AU  - A. S. Afanaseva-Grigoreva
TI  - Optimal discrete Neumann energy in a ball and an annulus
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 109
EP  - 119
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a29/
LA  - en
ID  - SEMR_2022_19_1_a29
ER  - 
%0 Journal Article
%A E. G. Prilepkina
%A A. S. Afanaseva-Grigoreva
%T Optimal discrete Neumann energy in a ball and an annulus
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 109-119
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a29/
%G en
%F SEMR_2022_19_1_a29
E. G. Prilepkina; A. S. Afanaseva-Grigoreva. Optimal discrete Neumann energy in a ball and an annulus. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 109-119. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a29/