Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a29, author = {E. G. Prilepkina and A. S. Afanaseva-Grigoreva}, title = {Optimal discrete {Neumann} energy in a ball and an annulus}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {109--119}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a29/} }
TY - JOUR AU - E. G. Prilepkina AU - A. S. Afanaseva-Grigoreva TI - Optimal discrete Neumann energy in a ball and an annulus JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 109 EP - 119 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a29/ LA - en ID - SEMR_2022_19_1_a29 ER -
%0 Journal Article %A E. G. Prilepkina %A A. S. Afanaseva-Grigoreva %T Optimal discrete Neumann energy in a ball and an annulus %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 109-119 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a29/ %G en %F SEMR_2022_19_1_a29
E. G. Prilepkina; A. S. Afanaseva-Grigoreva. Optimal discrete Neumann energy in a ball and an annulus. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 109-119. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a29/
[1] P. Henrici, Applied and computational complex analysis, v. 3, Wiley Sons, New York etc, 1986 | MR | Zbl
[2] M.A. Sadybekov, B.T. Torebek, B.Kh. Turmetov, “Representation of Green's function of the Neumann problem for a multi-dimensional ball”, Complex Var. Elliptic Equ., 61:1 (2015), 104–123 | DOI | MR | Zbl
[3] J.S. Brauchart, D.P. Hardin, E.B. Saff, “The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N”, Bull. Lond. Math. Soc., 41:4 (2009), 621–633 | DOI | MR | Zbl
[4] S.V. Borodachov, D.P. Hardin, E.B. Saff, Discrete energy on rectifiable sets, Springer, New York, 2019 | MR | Zbl
[5] J.S. Brauchart, D.P. Hardin, E.B. Saff, “The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere”, Contemp. Math., 578, 2012, 31–61 | DOI | MR | Zbl
[6] V.N. Dubinin, “Green energy and extremal decompositions”, Probl. Anal. Issues Anal., 8(26):3 (2019), 38–44 | DOI | MR | Zbl
[7] V.N. Dubinin, E.G. Prilepkina, “Optimal Green energy points on the circles in d-space”, J. Math. Anal. Appl., 499:2 (2021), 125055 | DOI | MR | Zbl
[8] N.S. Landkoff, Foundations of modern potential theory, Springer-Verlag, Berlin-Heidelberg-New York, 1972 | MR | Zbl
[9] Z. Nehari, “Some inequalities in the theory of functions”, Trans. Am. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl
[10] P. Duren, M.M. Schiffer, “Robin functions and energy functionals of multiply connected domains”, Pac. J. Math., 148:2 (1991), 251–273 | DOI | MR | Zbl
[11] V.N. Dubinin, “Quadratic forms involving Green's and Robin functions”, Sb. Math., 200:10 (2009), 1439–1452 | DOI | MR | Zbl
[12] E.G. Prilepkina, “On quadratic forms generated by the Neumann functions”, J. Math. Sci., New York, 207:6 (2015), 909–922 | DOI | MR | Zbl
[13] D.B. Karp, E. Prilepkina, “Reduced modulus with free boundary and its applications”, Ann. Acad. Sci. Fenn., Math., 34:2 (2009), 353–378 | MR | Zbl
[14] K.A. Gulyaeva, S.I. Kalmykov, E.G. Prilepkina, “Extremal decomposition problems in the Euclidean space”, International Journal of Mathematical Analysis, 9:56 (2015), 2763–2773 | DOI
[15] V.N. Dubinin, E.G. Prilepkina, “On the preservation of generalized reduced modulus under some geometric transformations of domains in the plane”, Dal'nevost. Mat. Zh., 6:1-2 (2005), 39–56