@article{SEMR_2022_19_1_a27,
author = {M. S. Sgibnev},
title = {The renewal equation with unbounded inhomogeneous term},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {81--90},
year = {2022},
volume = {19},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a27/}
}
M. S. Sgibnev. The renewal equation with unbounded inhomogeneous term. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 81-90. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a27/
[1] W. Feller, An introduction to probability theory and its applications, v. II, Wiley, New York etc, 1966 | MR | Zbl
[2] E. Hille, R.S. Phillips, Functional analysis and semigroups, Colloquium Publications, 31, American Mathematical Society, Providence, 1957 | MR | Zbl
[3] G. Alsmeyer, Erneuerungstheorie, B.G. Teubner, Stuttgart, 1991 | MR | Zbl
[4] M.S. Sgibnev, “Stone's decomposition of the renewal measure via Banach-algebraic techniques”, Proc. Am. Math. Soc., 130:8 (2002), 2425–2430 | DOI | MR | Zbl
[5] M.S. Sgibnev, “An asymptotic expansion for the distribution of the supremum of a random walk”, Stud. Math., 140:1 (2000), 41–55 | DOI | MR | Zbl
[6] M.S. Sgibnev, “On invertibilty conditions for elements of Banach algebras of measures”, Math. Notes, 93:5 (2013), 763–765 | DOI | MR | Zbl
[7] W. Rudin, Principles of mathematical analysis, McGraw-Hill Book Company, New York etc, 1964 | MR | Zbl
[8] P.R. Halmos, Measure theory, Springer, New York etc, 1974 | MR | Zbl
[9] E. Seneta, Regularly varying functions, Springer, Berlin etc, 1976 | MR | Zbl
[10] M.S. Sgibnev, “The discrete renewal equation with nonsummable inhomogeneous term”, Brazilian Journal of Probability and Statistics (to appear) | MR