The renewal equation with unbounded inhomogeneous term
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 81-90
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the renewal equation whose kernel is a probability distribution with positive mean. The inhomogeneous term behaves like a submultiplicative function tending to infinity. Asymptotic properties of the solution are established depending on the asymptotics of the submultiplicative function.
Keywords:
renewal equation, probability distribution, positive mean, unbounded inhomogeneous term, submultiplicative function, asymptotic behavior.
@article{SEMR_2022_19_1_a27,
author = {M. S. Sgibnev},
title = {The renewal equation with unbounded inhomogeneous term},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {81--90},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a27/}
}
M. S. Sgibnev. The renewal equation with unbounded inhomogeneous term. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 81-90. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a27/