On a class of vertex-transitive distance-regular covers of complete graphs, II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 348-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be an abelian antipodal distance-regular graph of diameter 3 with the following property: $(*)$ $\Gamma$ has a transitive group $\overline{G}$ of automorphisms which induces a primitive almost simple permutation group $\overline{G}^{\Sigma}$ on the set ${\Sigma}$ of its antipodal classes. If permutation rank ${\rm rk}(\overline{G}^{\Sigma})$ of $\overline{G}^{\Sigma}$ equals $2$, then $\Gamma$ is arc-transitive; moreover, all such graphs are now known. The purpose of this paper is to describe the graphs $\Gamma$ with the property $(*)$ in the case when ${\rm rk}(\overline{G}^{\Sigma})=3$. According to the classification of primitive almost simple permutation groups of rank $3$ the socle of the group $\overline{G}^{\Sigma}$ under the given condition is either a sporadic simple group, or an alternating group, or a simple group of exceptional Lie type, or a classical simple group. Earlier, we described the graphs $\Gamma$ provided that ${\rm rk}(\overline{G}^{\Sigma})=3$ and the socle of $\overline{G}^{\Sigma}$ is a sporadic simple group. Here we study the cases when $(i)$ the socle of the group $\overline{G}^{\Sigma}$ is an alternating group or $(ii)$ $|{\Sigma}|\le 2500$ and socle of $\overline{G}^{\Sigma}$ is a simple group of exceptional Lie type. We show that the family of non-bipartite graphs $\Gamma$ with the property $(*)$ and $\mathrm{rk}(\overline{G}^{\Sigma})=3$ in the alternating case is finite and limited to a small number of potential examples with $|\Sigma|\in\{10,28,120\}$, each of which is a covering of one of five certain distance-transitive Taylor graphs. For each given group $\overline{G}^{\Sigma}$ of degree $|{\Sigma}|\le 2500$ of exceptional type, we essentially restrict the set of admissible parameters of $\Gamma$.
Keywords: distance-regular graph, abelian cover, vertex-transitive graph, rank 3 group.
Mots-clés : antipodal cover
@article{SEMR_2022_19_1_a20,
     author = {L. Yu. Tsiovkina},
     title = {On a class of vertex-transitive distance-regular covers of complete graphs, {II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {348--359},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a20/}
}
TY  - JOUR
AU  - L. Yu. Tsiovkina
TI  - On a class of vertex-transitive distance-regular covers of complete graphs, II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 348
EP  - 359
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a20/
LA  - ru
ID  - SEMR_2022_19_1_a20
ER  - 
%0 Journal Article
%A L. Yu. Tsiovkina
%T On a class of vertex-transitive distance-regular covers of complete graphs, II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 348-359
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a20/
%G ru
%F SEMR_2022_19_1_a20
L. Yu. Tsiovkina. On a class of vertex-transitive distance-regular covers of complete graphs, II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 348-359. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a20/

[1] R. Abbott, J. Bray, S. Linton, S. Nickerson, S. Norton, R. Parker, I. Suleiman, J. Tripp, P. Walsh, R. Wilson, ATLAS of Group Representations – Ver. 3 http://brauer.maths.qmul.ac.uk/Atlas/v3/

[2] M. Aschbacher, Finite group theory, Cambridge Studies in Advanced Mathematics, 10, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[3] E. Bannai, “Maximal subgroups of low rank of finite symmetric and alternating groups”, J. Fac. Sci. Univ. Tokyo, Sect. 1 A, Mathematics, 16 (1972), 475–486 | MR

[4] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc, 1989 | MR | Zbl

[5] A.E. Brouwer, H. Van Maldeghem, Strongly regular graphs, Cambridge University Press, Cambridge, 2022 | MR | Zbl

[6] J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[7] GAP Groups, Algorithms, and Programming, Version 4.7.8, The GAP Group, 2015

[8] C.D. Godsil, A.D. Hensel, “Distance regular covers of the complete graph”, J. Comb. Theory Ser. B, 56:2 (1992), 205–238 | DOI | MR | Zbl

[9] C.D. Godsil, R.A. Liebler, C.E. Praeger, “Antipodal distance transitive covers of complete graphs”, Eur. J. Comb., 19:4 (1998), 455–478 | DOI | MR | Zbl

[10] D. Gorenstein, Finite simple groups. An introduction to their classification, Plenum Press, New York–London, 1982 | MR | Zbl

[11] M. Klin, C. Pech, S. Reichard, COCO2P – a GAP4 package, ver. 0.18, , 2020 https://github.com/chpech/COCO2P/

[12] M.W. Liebeck, J. Saxl, “The finite primitive permutation groups of rank three”, Bull. Lond. Math. Soc., 18 (1986), 165–172 | DOI | MR | Zbl

[13] C.M. Roney-Dougal, “The primitive permutation groups of degree less than 2500”, J. Algebra, 292:1 (2005), 154–183 | DOI | MR | Zbl

[14] L.H. Soicher, The GRAPE package for GAP, ver. 4.6.1, 2012 http://www.maths.qmul.ac.uk/l̃eonard/grape/ | Zbl

[15] L.Yu. Tsiovkina, “On a class of vertex-transitive distance-regular covers of complete graphs”, Sib. Èlectron. Mat. Izv., 18:2 (2021), 758–781 | DOI | MR | Zbl

[16] L.Yu. Tsiovkina, “On a class of edge-transitive distance-regular antipodal covers of complete graphs”, Ural Math. J., 7:2 (2021), 136–158 | DOI | MR | Zbl