On read-once Boolean functions in elementary base extended by median
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 378-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boolean functions that can be realized by read-once terms (formulas) in elementary base extended by median are studied. An algorithm for finding read-once representations of Boolean functions in this base is obtained.
Keywords: Boolean function, base, read-once term.
Mots-clés : superposition, decomposition
@article{SEMR_2022_19_1_a14,
     author = {I. K. Sharankhaev},
     title = {On read-once {Boolean} functions in elementary base extended by median},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {378--386},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a14/}
}
TY  - JOUR
AU  - I. K. Sharankhaev
TI  - On read-once Boolean functions in elementary base extended by median
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 378
EP  - 386
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a14/
LA  - ru
ID  - SEMR_2022_19_1_a14
ER  - 
%0 Journal Article
%A I. K. Sharankhaev
%T On read-once Boolean functions in elementary base extended by median
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 378-386
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a14/
%G ru
%F SEMR_2022_19_1_a14
I. K. Sharankhaev. On read-once Boolean functions in elementary base extended by median. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 378-386. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a14/

[1] A.V. Kuznetsov, “On non-repeating contact schemes and non-repeating superpositions of functions of algebra of logic”, Tr. Mat. Inst. Steklova, 51, 1958, 186–225 | MR | Zbl

[2] S.F. Vinokurov, N.A. Peryazev (eds.), Selected problems in the theory of Boolean functions, Fizmatlit, M., 2001 | Zbl

[3] N.A. Peryazev, I.K. Sharankhaev, “Criteria for a Boolean function to be a repetition free in the pre-elementary bases of rank 3”, Discrete Math. Appl., 15:3 (2005), 299–311 | DOI | MR | Zbl

[4] N.A. Peryazev, Fundamentals of the theory of Boolean functions, Fizmatlit, M., 1999