Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a14, author = {I. K. Sharankhaev}, title = {On read-once {Boolean} functions in elementary base extended by median}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {378--386}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a14/} }
TY - JOUR AU - I. K. Sharankhaev TI - On read-once Boolean functions in elementary base extended by median JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 378 EP - 386 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a14/ LA - ru ID - SEMR_2022_19_1_a14 ER -
I. K. Sharankhaev. On read-once Boolean functions in elementary base extended by median. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 378-386. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a14/
[1] A.V. Kuznetsov, “On non-repeating contact schemes and non-repeating superpositions of functions of algebra of logic”, Tr. Mat. Inst. Steklova, 51, 1958, 186–225 | MR | Zbl
[2] S.F. Vinokurov, N.A. Peryazev (eds.), Selected problems in the theory of Boolean functions, Fizmatlit, M., 2001 | Zbl
[3] N.A. Peryazev, I.K. Sharankhaev, “Criteria for a Boolean function to be a repetition free in the pre-elementary bases of rank 3”, Discrete Math. Appl., 15:3 (2005), 299–311 | DOI | MR | Zbl
[4] N.A. Peryazev, Fundamentals of the theory of Boolean functions, Fizmatlit, M., 1999