Automorphisms of nonsplit coverings of $PSL_2(q)$ in odd characteristic dividing $q-1$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 285-291

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify the nonsplit extensions of elementary abelian $p$-groups by $\operatorname{PSL}_2(q)$, with odd $p$ dividing $q-1$, for an irreducible induced action, calculate the relevant low-dimensional cohomology groups, and describe the automorphism groups of such extensions.
@article{SEMR_2022_19_1_a11,
     author = {Andrei V. Zavarnitsine},
     title = {Automorphisms of nonsplit coverings of $PSL_2(q)$ in odd characteristic dividing $q-1$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {285--291},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a11/}
}
TY  - JOUR
AU  - Andrei V. Zavarnitsine
TI  - Automorphisms of nonsplit coverings of $PSL_2(q)$ in odd characteristic dividing $q-1$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 285
EP  - 291
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a11/
LA  - en
ID  - SEMR_2022_19_1_a11
ER  - 
%0 Journal Article
%A Andrei V. Zavarnitsine
%T Automorphisms of nonsplit coverings of $PSL_2(q)$ in odd characteristic dividing $q-1$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 285-291
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a11/
%G en
%F SEMR_2022_19_1_a11
Andrei V. Zavarnitsine. Automorphisms of nonsplit coverings of $PSL_2(q)$ in odd characteristic dividing $q-1$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 285-291. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a11/