Structure of $4$-strand singular pure braid group
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 18-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a finite presentation for the singular pure braid group $SP_4$ on $4$ strands. As consequence it was proved that the center $Z(SP_4)$, which is the infinite cyclic group, is a direct factor in $SP_4$. On the other side, we establish that $Z(SP_4)$ is not a direct factor in the singular braid group $SG_4$.
Keywords: braid group, pure braid group, singular braid group, singular pure braid group, center of group, finite presentation.
@article{SEMR_2022_19_1_a0,
     author = {T. A. Kozlovskaya},
     title = {Structure of $4$-strand singular pure braid group},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a0/}
}
TY  - JOUR
AU  - T. A. Kozlovskaya
TI  - Structure of $4$-strand singular pure braid group
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 18
EP  - 33
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a0/
LA  - en
ID  - SEMR_2022_19_1_a0
ER  - 
%0 Journal Article
%A T. A. Kozlovskaya
%T Structure of $4$-strand singular pure braid group
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 18-33
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a0/
%G en
%F SEMR_2022_19_1_a0
T. A. Kozlovskaya. Structure of $4$-strand singular pure braid group. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 18-33. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a0/

[1] E. Artin, “Theory of braids”, Ann. Math. (2), 48 (1947), 101–126 | DOI | MR | Zbl

[2] J.C. Baez, “Link invariants of finite type and perturbation theory”, Lett. Math. Phys., 26:1 (1992), 43–51 | DOI | MR | Zbl

[3] V.G. Bardakov, P. Bellingeri, “Combinatorial properties of virtual braids”, Topology Appl., 156:6 (2009), 1071–1082 | DOI | MR | Zbl

[4] V.G. Bardakov, S. Jablan, H. Wang, “Monoid and group of pseudo braids”, J. Knot Theory Ramifications, 25:9 (2016), 1641002 | DOI | MR | Zbl

[5] V.G. Bardakov, R. Mikhailov, V.V. Vershinin, J. Wu, “On the pure virtual braid group $PV_3$”, Commun. Algebra, 44:3 (2016), 1350–1378 | DOI | MR | Zbl

[6] V.G. Bardakov, T.A. Kozlovskaya, “On 3-strand singular pure braid group”, J. Knot Theory Ramifications, 29:10 (2020), 2042001 | DOI | MR | Zbl

[7] V.G. Bardakov, J. Wu, Lifting theorem for the virtual pure braid groups, 2020, arXiv: 2002.08686

[8] J.S. Birman, Braids, links and mapping class group, Annals of Mathematics Studies, 82, Princeton University Press and University of Tokyo Press, Princeton, 1975 | MR | Zbl

[9] J.S. Birman, “New points of view in knot theory”, Bull. Am. Math. Soc., New Ser., 28:2 (1993), 253–287 | DOI | MR | Zbl

[10] R. Corran, “A normal form for a class of monoids including the singular braid monoid”, J. Algebra, 223:1 (2000), 256–282 | DOI | MR | Zbl

[11] W.-L. Chow, “On the algebraic braid group”, Ann. Math. (2), 49:3 (1948), 654–658 | DOI | MR | Zbl

[12] O.T. Dasbach, B. Gemein, The word problem for the singular braid monoid, 1998, arXiv: math/9809070 | MR | Zbl

[13] O.T. Dasbach, B. Gemein, A faithful representation of the singular braid monoid on three strands, 1998, arXiv: math/9806050 | MR | Zbl

[14] R. Fenn, D. Rolfsen, J. Zhu, “Centralizers in the braid group and singular braid monoid”, Enseign. Math., II. Sér., 42:1–2 (1996), 75–96 | MR | Zbl

[15] R. Fenn, E. Keyman, C. Rourke, “The singular braid monoid embeds in a group”, J. Knot Theory Ramifications, 7:7 (1998), 881–892 | DOI | MR | Zbl

[16] K. Gongopadhyay, T. Kozlovskaya, O. Mamonov, “On some decompositions of the 3-strand singular braid group”, Topology Appl., 283 (2020), 107398 | DOI | MR | Zbl

[17] A. Járai, “On the monoid of singular braids”, Topology Appl., 96:2 (1999), 109–119 | DOI | MR | Zbl

[18] C. Kassel, V. Turaev, Braid groups, Graduate Texts in Mathematics, 247, Springer, New York, 2008 | DOI | MR | Zbl

[19] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers, New York etc, 1966 | MR | Zbl

[20] A.A. Markoff, “Foundations of the algebraic theory of braids”, Tr. Mat. Inst. Steklova, 16, 1945 | MR | Zbl

[21] M.V. Neshchadim, “Inner automorphisms and some their generalizations”, Sib. Èlektron. Mat. Izv., 13 (2016), 1383–1400 | MR | Zbl

[22] M.V. Neshchadim, Normal automorphisms of braid groups, v. 4, Institute of mathimatics SB RAN, Novosibirsk, 1993 | MR

[23] L. Paris, “Braid groups and Artin groups”, Handbook of Teichmuller theory, v. II, IRMA Lectures in Mathematics and Theoretical Physics, 13, ed. Papadopoulos Athanase, Eur. Math. Soc., Zurich, 2009, 389–451 | MR | Zbl

[24] V.V. Vershinin, “On the singular braid monoid”, St. Petersbg. Math. J., 21:5 (2010), 693–704 | DOI | MR | Zbl