Structure of $4$-strand singular pure braid group
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 18-33

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a finite presentation for the singular pure braid group $SP_4$ on $4$ strands. As consequence it was proved that the center $Z(SP_4)$, which is the infinite cyclic group, is a direct factor in $SP_4$. On the other side, we establish that $Z(SP_4)$ is not a direct factor in the singular braid group $SG_4$.
Keywords: braid group, pure braid group, singular braid group, singular pure braid group, center of group, finite presentation.
@article{SEMR_2022_19_1_a0,
     author = {T. A. Kozlovskaya},
     title = {Structure of $4$-strand singular pure braid group},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a0/}
}
TY  - JOUR
AU  - T. A. Kozlovskaya
TI  - Structure of $4$-strand singular pure braid group
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 18
EP  - 33
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a0/
LA  - en
ID  - SEMR_2022_19_1_a0
ER  - 
%0 Journal Article
%A T. A. Kozlovskaya
%T Structure of $4$-strand singular pure braid group
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 18-33
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a0/
%G en
%F SEMR_2022_19_1_a0
T. A. Kozlovskaya. Structure of $4$-strand singular pure braid group. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 18-33. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a0/