On some intervals in the lattice of ultraclones of rank $2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1210-1218
Cet article a éte moissonné depuis la source Math-Net.Ru
In article the intervals in the lattice of ultraclones of rank $2$ are considered. The well-known classes of all monotone $M$, all self-dual $S$ and all linear $L$ Boolean functions are ultraclones of rank $2$. We proved that each of the intervals $\Im (M, H_2)$, $\Im (S, H_2)$, $\Im(L, H_2)$, where $H_2$ is complete ultraclone of rank $2$, contains exactly $4$ elements.
Keywords:
hyperfunction, Boolean function, monotone function, self-dual function, linear function, closed set, clone, ultraclone, lattice, interval of lattice.
Mots-clés : superposition
Mots-clés : superposition
@article{SEMR_2021_18_2_a8,
author = {S. A. Badmaev and A. E. Dugarov and I. V. Fomina and I. K. Sharankhaev},
title = {On some intervals in the lattice of ultraclones of rank~$2$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1210--1218},
year = {2021},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a8/}
}
TY - JOUR AU - S. A. Badmaev AU - A. E. Dugarov AU - I. V. Fomina AU - I. K. Sharankhaev TI - On some intervals in the lattice of ultraclones of rank $2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1210 EP - 1218 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a8/ LA - ru ID - SEMR_2021_18_2_a8 ER -
%0 Journal Article %A S. A. Badmaev %A A. E. Dugarov %A I. V. Fomina %A I. K. Sharankhaev %T On some intervals in the lattice of ultraclones of rank $2$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1210-1218 %V 18 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a8/ %G ru %F SEMR_2021_18_2_a8
S. A. Badmaev; A. E. Dugarov; I. V. Fomina; I. K. Sharankhaev. On some intervals in the lattice of ultraclones of rank $2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1210-1218. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a8/
[1] E.L. Post, “Introduction to a general theory of elementary propositions”, Amer. J., 43:4 (1921), 163–185 | Zbl
[2] S. Yu. Khaltanova, V.I. Panteleyev, “About some intervals in the lattic of clones of partial ultrafunctions”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 3:4 (2010), 80–87 | Zbl
[3] S. Yu. Khaltanova, “On two isomorphic intervals in the lattice of ultraclones on two-elements set”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 7 (2014), 133–140 | Zbl
[4] V.I. Panteleyev, “Criteria of completeness for redefining Boolean functions”, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 2009:2(68) (2009), 60–79 | Zbl
[5] S.S. Marchenkov, Closed classes of Boolean functions, Fizmatlit, M., 2001 | Zbl