Reduction of the Kolmogorov inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1625-1638

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we delve into connection between sharp constants in the inequalities $$\|y'\|_{L_q(\mathbb{R})}\le K_+ \sqrt{\|y\|_{L_r(\mathbb{R})}\|y''_+\|_{L_p(\mathbb{R})} },$$ $$\|u'\|_{L_q(0,1)}\le \overline{K} \sqrt{\|u\|_{L_r(0,1)} \|u''\|_{L_p(0,1)}},$$ where the second one is considered for convex functions $u(x)$, $x\in[0,1]$ with an absolutely continuous derivative that vanishes at the point $x=0$. We prove that $K_+=\overline{K}$ under conditions $1 \le q,r,p\infty$ and $1/r+1/p=2/q$.
Keywords: Kolmogorov inequality, inequalities between norms of function and its derivatives, non-negative part of the second derivative
Mots-clés : exact constant.
@article{SEMR_2021_18_2_a76,
     author = {N. S. Payuchenko},
     title = {Reduction of the {Kolmogorov} inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1625--1638},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a76/}
}
TY  - JOUR
AU  - N. S. Payuchenko
TI  - Reduction of the Kolmogorov inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1625
EP  - 1638
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a76/
LA  - ru
ID  - SEMR_2021_18_2_a76
ER  - 
%0 Journal Article
%A N. S. Payuchenko
%T Reduction of the Kolmogorov inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1625-1638
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a76/
%G ru
%F SEMR_2021_18_2_a76
N. S. Payuchenko. Reduction of the Kolmogorov inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1625-1638. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a76/