Reduction of the Kolmogorov inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1625-1638.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we delve into connection between sharp constants in the inequalities $$\|y'\|_{L_q(\mathbb{R})}\le K_+ \sqrt{\|y\|_{L_r(\mathbb{R})}\|y''_+\|_{L_p(\mathbb{R})} },$$ $$\|u'\|_{L_q(0,1)}\le \overline{K} \sqrt{\|u\|_{L_r(0,1)} \|u''\|_{L_p(0,1)}},$$ where the second one is considered for convex functions $u(x)$, $x\in[0,1]$ with an absolutely continuous derivative that vanishes at the point $x=0$. We prove that $K_+=\overline{K}$ under conditions $1 \le q,r,p\infty$ and $1/r+1/p=2/q$.
Keywords: Kolmogorov inequality, inequalities between norms of function and its derivatives, non-negative part of the second derivative
Mots-clés : exact constant.
@article{SEMR_2021_18_2_a76,
     author = {N. S. Payuchenko},
     title = {Reduction of the {Kolmogorov} inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1625--1638},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a76/}
}
TY  - JOUR
AU  - N. S. Payuchenko
TI  - Reduction of the Kolmogorov inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1625
EP  - 1638
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a76/
LA  - ru
ID  - SEMR_2021_18_2_a76
ER  - 
%0 Journal Article
%A N. S. Payuchenko
%T Reduction of the Kolmogorov inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1625-1638
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a76/
%G ru
%F SEMR_2021_18_2_a76
N. S. Payuchenko. Reduction of the Kolmogorov inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1625-1638. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a76/

[1] A.N. Kolmogorov, “On inequalities between upper bounds of consecutive derivatives of an arbitrary function defined on an infinite interval”, Moskov. Gos. Univ., Uchenye Zap., 30 (1939), 3–16 | MR | Zbl

[2] V.V. Arestov, V.N. Gabushin, “Best approximation of unbounded operators by bounded ones”, Russ. Math., 39:11 (1995), 38–63 | MR | Zbl

[3] V.V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russ. Math. Surv., 51:6 (1996), 1093–1126 | DOI | MR | Zbl

[4] V.F. Babenko, N.P. Korneychuk, V.A. Kofanov, S.A. Pichugov, Inequalities for derivatives and their applications, Naukova dumka, Kyiv, 2003

[5] V.A. Kofanov, “Inequalities for derivatieves of functions on an axis with nonsymmetrically bounded higher derivatives”, Ukr. Math. J., 64:5 (2012), 721–736 | DOI | MR | Zbl

[6] Yu. Babenko, D. Skorokhodov, “Stechkin's problem for differential operators and functionals of first and second orders”, J. Approx. Theory, 167 (2013), 173–200 | DOI | MR | Zbl

[7] A.Yu. Shadrin, “The Landau-Kolmogorov inequality revisited”, Discrete Contin. Dyn. Syst., 34:3 (2014), 1183–1210 | DOI | MR | Zbl

[8] D. Skorokhodov, “On the Landau-Kolmogorov inequality between $\|f'\|_\infty$,$\|f\|_\infty$ and $\|f'''\|_1$”, Res. Math., 27:1 (2019), 55–66 | DOI | Zbl

[9] V.N. Gabushin, “Inequalities between derivatives in the $L_p$ metrics at $0

\leq \infty$”, Izv. Akad. Nauk SSSR, Ser. Mat., 40:4 (1976), 869–892 | MR | Zbl

[10] L. Hörmander, “A new proof and a generalization of an inequality of Bohr”, Math. Scand., 2 (1954), 33–45 | DOI | MR | Zbl

[11] V.N. Gabushin, N.P. Dmitriev, “On comparison theorems”, Vychisl. Sist., 81 (1979), 55–62 | MR | Zbl

[12] E.A. Zernyshkina, “Kolmogorov type inequality in $L_2$ on the real line with one-sided norm”, East J. Approx., 12:2 (2006), 127–150 | MR

[13] N.S. Payuchenko, Kolmogorov inequality in $L_2$, $L_1$ and one-sided $L_\infty$ norms on the real line, in print

[14] V.V. Arestov, V.I. Berdyshev, “Inequalities for differentiable functions”, Tr. Inst. Mat. Mekh., (Ekaterinburg), 17, 1975, 108–138 | MR