Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a64, author = {E. L. Shishkina and S. M. Sitnik and I. Jebabli}, title = {Application of integral transforms composition method {(ITCM)} to obtaining transmutations via integral transforms with {Bessel} functions in kernels}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {884--900}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a64/} }
TY - JOUR AU - E. L. Shishkina AU - S. M. Sitnik AU - I. Jebabli TI - Application of integral transforms composition method (ITCM) to obtaining transmutations via integral transforms with Bessel functions in kernels JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 884 EP - 900 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a64/ LA - en ID - SEMR_2021_18_2_a64 ER -
%0 Journal Article %A E. L. Shishkina %A S. M. Sitnik %A I. Jebabli %T Application of integral transforms composition method (ITCM) to obtaining transmutations via integral transforms with Bessel functions in kernels %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 884-900 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a64/ %G en %F SEMR_2021_18_2_a64
E. L. Shishkina; S. M. Sitnik; I. Jebabli. Application of integral transforms composition method (ITCM) to obtaining transmutations via integral transforms with Bessel functions in kernels. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 884-900. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a64/
[1] V.V. Katrakhov, S.M. Sitnik, “The transmutation operator method and boundary value problems for singular elliptic equations”, Sovrem. Mat. Fundam. Napravl., 64, no. 2, 2018, 211–426 | MR
[2] S.M. Sitnik, E.L. Shishkina, Method of transmutations for differential equations with Bessel operators, Fizmatlit, M., 2019
[3] A. Fitouhi, I. Jebabli, E.L. Shishkina, S.M. Sitnik, “Applications of the integral transforms composition method to wave-type singular differential equations and index shift transmutations”, Electron. J. Differ. Equ., 2018 (2018), 130, 27 pp. | DOI | Zbl
[4] V.V. Katrakhov, S.M. Sitnik, “Composition method for constructing $B$-elliptic, $B$-hyperbolic, and $B$-parabolic transformation operators”, Russ. Acad. Sci., Dokl. Math., 50:1 (1995), 70–77 | Zbl
[5] E.L. Shishkina, S.M. Sitnik, Transmutations, singular and fractional differential equations with applications to mathematical physics, Elsevier/Academic Press, Amsterdam, 2020 | Zbl
[6] S.M. Sitnik, Unitarity and boundness of zero smooth order of Buschman-Erdelyi operators, Preprint of Far Eastern Branch of the Russian Academy of Sciences, 1990, 45 pp.
[7] D.B. Karp, S.M. Sitnik, Composition formulas for integral transforms with Bessel functions in kernels, Preprint of Far Eastern Branch of the Russian Academy of Sciences, 1993, 22 pp.
[8] Yu.A. Brychkov, H.-J. Glaeske, O.I. Marichev, “Factorization of integral transformations of convolution type”, J. Sov. Math., 30:3 (1985), 2071–2094 | DOI | Zbl
[9] Tuan Vu Kim, O.I. Marichev, S.B. Yakubovich, “Composition structure of integral transformations”, Sov. Math. Dokl., 33 (1986), 166–170 | Zbl
[10] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, London, 1966 | Zbl
[11] N.I. Akhiezer, I.M. Glazman, Theory of linear operators in Hilbert space, Pitman, Boston etc, 1981 | Zbl
[12] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher transcendental functions, v. I, McGraw-Hill, New York, 1953 | Zbl
[13] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher transcendental functions, v. II, McGraw-Hill, New York etc, 1953 | Zbl
[14] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Table of integrals transforms, v. I, McGraw-Hill, New York, 1954 | Zbl
[15] N. Dunford, J.T. Schwartz, Linear operators, v. I, General Theory, Wiley-Interscience, New York–London, 1958 | Zbl
[16] M.M. Djrbashian, Integral transforms and representations of functions in the complex domain, Nauka, M., 1966 | Zbl
[17] P. Heywood, P.G. Rooney, “On the Hankel and some related transformations”, Can. J. Math., 40:4 (1988), 989–1009 | DOI | Zbl
[18] O.I. Marichev, A method of calculating integrals of special functions, Nauka i Tekhnika, Minsk, 1978 | Zbl
[19] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, New York, 1993 | Zbl
[20] P.G. Rooney, “A technique for studying the boundedness and extendability of certain types of operators”, Can. J. Math., 25 (1973), 1090–1102 | DOI | Zbl
[21] P.G. Rooney, “On the $Y_R$ and $H_R$ transformations”, Can. J. Math., 32 (1980), 1021–1044 | DOI | Zbl
[22] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and series, v. 3, More special functions, Gordon and Breach, New York, 1990 | Zbl
[23] E.C. Titchmarsh, Introduction to the theory of Fourier integrals, 2nd.ed., Oxford University Press, Oxford, 1948 ; 1st ed., 1937 | Zbl
[24] Yu.V. Sidorov, M.V. Fedoryuk, M.I. Shabunin, Lectures on the theory of functions of a complex variable, Nauka, M., 1989 | Zbl
[25] F.W.J. Olver, Asymptotics and special functions, Academic Press, New York–London, 1974 | Zbl
[26] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi (eds.), Tables of integral transforms, v. II, Based, in part, on notes left by Harry Bateman, McGraw-Hill, New York etc, 1954 | Zbl
[27] A.H. Zemanian, Integral transformations of generalized functions, Nauka, M., 1974 | Zbl