Application of integral transforms composition method (ITCM) to obtaining transmutations via integral transforms with Bessel functions in kernels
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 884-900.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we apply the Integral Transforms Composition Method (ITCM) in order to derive compositions of integral transforms with Bessel functions in kernels, and obtain norm estimates and other properties of such composition transforms. Exactly, we consider transmutations which are compositions of classical Hankel and $Y$ integral transforms. Norms estimates in $L_2$ for these integral transforms with Bessel functions in kernels and their compositions are obtained. Also boundedness conditions for such transforms in weighted Lebesgue classes are proved. Classical integral transforms are used in this method as basic blocks. The ITCM and transmutations obtained by this method are applied to deriving connection formulas for solutions of singular differential equations.
Keywords: Hankel transform, Integral Transforms Composition Method (ITCM), Slater theorem, Bessel functions, Meijer $G$–function, hypergeometric functions, Mellin transform.
Mots-clés : $Y$ transform, transmutations
@article{SEMR_2021_18_2_a64,
     author = {E. L. Shishkina and S. M. Sitnik and I. Jebabli},
     title = {Application of integral transforms composition method {(ITCM)} to obtaining transmutations via integral transforms with {Bessel} functions in kernels},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {884--900},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a64/}
}
TY  - JOUR
AU  - E. L. Shishkina
AU  - S. M. Sitnik
AU  - I. Jebabli
TI  - Application of integral transforms composition method (ITCM) to obtaining transmutations via integral transforms with Bessel functions in kernels
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 884
EP  - 900
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a64/
LA  - en
ID  - SEMR_2021_18_2_a64
ER  - 
%0 Journal Article
%A E. L. Shishkina
%A S. M. Sitnik
%A I. Jebabli
%T Application of integral transforms composition method (ITCM) to obtaining transmutations via integral transforms with Bessel functions in kernels
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 884-900
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a64/
%G en
%F SEMR_2021_18_2_a64
E. L. Shishkina; S. M. Sitnik; I. Jebabli. Application of integral transforms composition method (ITCM) to obtaining transmutations via integral transforms with Bessel functions in kernels. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 884-900. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a64/

[1] V.V. Katrakhov, S.M. Sitnik, “The transmutation operator method and boundary value problems for singular elliptic equations”, Sovrem. Mat. Fundam. Napravl., 64, no. 2, 2018, 211–426 | MR

[2] S.M. Sitnik, E.L. Shishkina, Method of transmutations for differential equations with Bessel operators, Fizmatlit, M., 2019

[3] A. Fitouhi, I. Jebabli, E.L. Shishkina, S.M. Sitnik, “Applications of the integral transforms composition method to wave-type singular differential equations and index shift transmutations”, Electron. J. Differ. Equ., 2018 (2018), 130, 27 pp. | DOI | Zbl

[4] V.V. Katrakhov, S.M. Sitnik, “Composition method for constructing $B$-elliptic, $B$-hyperbolic, and $B$-parabolic transformation operators”, Russ. Acad. Sci., Dokl. Math., 50:1 (1995), 70–77 | Zbl

[5] E.L. Shishkina, S.M. Sitnik, Transmutations, singular and fractional differential equations with applications to mathematical physics, Elsevier/Academic Press, Amsterdam, 2020 | Zbl

[6] S.M. Sitnik, Unitarity and boundness of zero smooth order of Buschman-Erdelyi operators, Preprint of Far Eastern Branch of the Russian Academy of Sciences, 1990, 45 pp.

[7] D.B. Karp, S.M. Sitnik, Composition formulas for integral transforms with Bessel functions in kernels, Preprint of Far Eastern Branch of the Russian Academy of Sciences, 1993, 22 pp.

[8] Yu.A. Brychkov, H.-J. Glaeske, O.I. Marichev, “Factorization of integral transformations of convolution type”, J. Sov. Math., 30:3 (1985), 2071–2094 | DOI | Zbl

[9] Tuan Vu Kim, O.I. Marichev, S.B. Yakubovich, “Composition structure of integral transformations”, Sov. Math. Dokl., 33 (1986), 166–170 | Zbl

[10] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, London, 1966 | Zbl

[11] N.I. Akhiezer, I.M. Glazman, Theory of linear operators in Hilbert space, Pitman, Boston etc, 1981 | Zbl

[12] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher transcendental functions, v. I, McGraw-Hill, New York, 1953 | Zbl

[13] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher transcendental functions, v. II, McGraw-Hill, New York etc, 1953 | Zbl

[14] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Table of integrals transforms, v. I, McGraw-Hill, New York, 1954 | Zbl

[15] N. Dunford, J.T. Schwartz, Linear operators, v. I, General Theory, Wiley-Interscience, New York–London, 1958 | Zbl

[16] M.M. Djrbashian, Integral transforms and representations of functions in the complex domain, Nauka, M., 1966 | Zbl

[17] P. Heywood, P.G. Rooney, “On the Hankel and some related transformations”, Can. J. Math., 40:4 (1988), 989–1009 | DOI | Zbl

[18] O.I. Marichev, A method of calculating integrals of special functions, Nauka i Tekhnika, Minsk, 1978 | Zbl

[19] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, New York, 1993 | Zbl

[20] P.G. Rooney, “A technique for studying the boundedness and extendability of certain types of operators”, Can. J. Math., 25 (1973), 1090–1102 | DOI | Zbl

[21] P.G. Rooney, “On the $Y_R$ and $H_R$ transformations”, Can. J. Math., 32 (1980), 1021–1044 | DOI | Zbl

[22] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and series, v. 3, More special functions, Gordon and Breach, New York, 1990 | Zbl

[23] E.C. Titchmarsh, Introduction to the theory of Fourier integrals, 2nd.ed., Oxford University Press, Oxford, 1948 ; 1st ed., 1937 | Zbl

[24] Yu.V. Sidorov, M.V. Fedoryuk, M.I. Shabunin, Lectures on the theory of functions of a complex variable, Nauka, M., 1989 | Zbl

[25] F.W.J. Olver, Asymptotics and special functions, Academic Press, New York–London, 1974 | Zbl

[26] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi (eds.), Tables of integral transforms, v. II, Based, in part, on notes left by Harry Bateman, McGraw-Hill, New York etc, 1954 | Zbl

[27] A.H. Zemanian, Integral transformations of generalized functions, Nauka, M., 1974 | Zbl