Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a63, author = {A. S. Romanov}, title = {Properties of extremal functions for $p$-capacity in $R^2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {845--866}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a63/} }
A. S. Romanov. Properties of extremal functions for $p$-capacity in $R^2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 845-866. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a63/
[1] Yu.G. Reshetnyak, “The concept of capacity in the theory of functions with generalized derivatives”, Sib. Math. J., 10:5 (1970), 818–842 | DOI | Zbl
[2] V.M. Gold'shtein, Yu.G. Reshetnyak, Quasiconformal mappings and Sobolev spaces, Kluwer Academic Publishers Group, Dordrecht etc, 1990 | Zbl
[3] V.G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin etc, 1985 | Zbl
[4] V.G. Maz'ya, V.P. Havin, “Non-linear potential theory”, Russ. Math. Surv., 27:1 (1972), 71–148 | DOI | Zbl
[5] L.C. Evans, R.F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992 | Zbl
[6] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970 | Zbl
[7] M. Brelo, Elements of the classical theory of potential, Mir, M., 1964 | Zbl
[8] W.P. Ziemer, Weakly differentiable functions, Springer-Verlag, Berlin etc, 1989 | Zbl
[9] B. Fuglede, “Extremal length and functional completion”, Acta Math., 98:3–4 (1957), 171–219 | DOI | Zbl
[10] W.P. Ziemer, “Extremal length and $p$-capacity”, Mich. Math. J., 16:1 (1969), 43–51 | DOI | Zbl
[11] T. Iwaniec, J.J. Manfredi, “Regularity of p-harmonic functions on the plane”, Rev. Mat. Iberoam., 5:1–2 (1989), 1–19 | DOI | Zbl
[12] J.J. Manfredi, “p-harmonic functions in the plane”, Proc. AMS, 103:2 (1988), 473–479 | Zbl
[13] B. Bojarski, P. Hajlasz, P. Strzelecki, “Sard's theorem for mappings in Hölder and Sobolev spaces”, Manuscr. Math., 118:3 (2005), 383–397 | DOI | Zbl
[14] A.S. Romanov, “Mappings related to extremal functions for p-capacity”, Sib. Électron. Mat. Izv., 16 (2019), 1295–1311 | DOI | Zbl
[15] W.P. Ziemer, “Extremal length and conformal capacity”, Trans. Am. Math. Soc., 126:3 (1967), 460–473 | DOI | Zbl
[16] V.A. Shlyk, “Capacity of a condenser and modulus of a family of separating surfaces”, J. Sov. Math., 59:6 (1992), 1240–1248 | DOI | Zbl
[17] A.S. Romanov, “Capacity relations in a flat quadrilateral”, Sib. Math. J., 49:4 (2008), 709–717 | DOI | Zbl