Properties of extremal functions for $p$-capacity in $R^2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 845-866.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider various properties of extremal functions for $p$-capacity in domains of the Euclidean space $R^2$.
Mots-clés : Sobolev spaces
Keywords: capacity, extremal functions.
@article{SEMR_2021_18_2_a63,
     author = {A. S. Romanov},
     title = {Properties of extremal functions for $p$-capacity in $R^2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {845--866},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a63/}
}
TY  - JOUR
AU  - A. S. Romanov
TI  - Properties of extremal functions for $p$-capacity in $R^2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 845
EP  - 866
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a63/
LA  - ru
ID  - SEMR_2021_18_2_a63
ER  - 
%0 Journal Article
%A A. S. Romanov
%T Properties of extremal functions for $p$-capacity in $R^2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 845-866
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a63/
%G ru
%F SEMR_2021_18_2_a63
A. S. Romanov. Properties of extremal functions for $p$-capacity in $R^2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 845-866. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a63/

[1] Yu.G. Reshetnyak, “The concept of capacity in the theory of functions with generalized derivatives”, Sib. Math. J., 10:5 (1970), 818–842 | DOI | Zbl

[2] V.M. Gold'shtein, Yu.G. Reshetnyak, Quasiconformal mappings and Sobolev spaces, Kluwer Academic Publishers Group, Dordrecht etc, 1990 | Zbl

[3] V.G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin etc, 1985 | Zbl

[4] V.G. Maz'ya, V.P. Havin, “Non-linear potential theory”, Russ. Math. Surv., 27:1 (1972), 71–148 | DOI | Zbl

[5] L.C. Evans, R.F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992 | Zbl

[6] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970 | Zbl

[7] M. Brelo, Elements of the classical theory of potential, Mir, M., 1964 | Zbl

[8] W.P. Ziemer, Weakly differentiable functions, Springer-Verlag, Berlin etc, 1989 | Zbl

[9] B. Fuglede, “Extremal length and functional completion”, Acta Math., 98:3–4 (1957), 171–219 | DOI | Zbl

[10] W.P. Ziemer, “Extremal length and $p$-capacity”, Mich. Math. J., 16:1 (1969), 43–51 | DOI | Zbl

[11] T. Iwaniec, J.J. Manfredi, “Regularity of p-harmonic functions on the plane”, Rev. Mat. Iberoam., 5:1–2 (1989), 1–19 | DOI | Zbl

[12] J.J. Manfredi, “p-harmonic functions in the plane”, Proc. AMS, 103:2 (1988), 473–479 | Zbl

[13] B. Bojarski, P. Hajlasz, P. Strzelecki, “Sard's theorem for mappings in Hölder and Sobolev spaces”, Manuscr. Math., 118:3 (2005), 383–397 | DOI | Zbl

[14] A.S. Romanov, “Mappings related to extremal functions for p-capacity”, Sib. Électron. Mat. Izv., 16 (2019), 1295–1311 | DOI | Zbl

[15] W.P. Ziemer, “Extremal length and conformal capacity”, Trans. Am. Math. Soc., 126:3 (1967), 460–473 | DOI | Zbl

[16] V.A. Shlyk, “Capacity of a condenser and modulus of a family of separating surfaces”, J. Sov. Math., 59:6 (1992), 1240–1248 | DOI | Zbl

[17] A.S. Romanov, “Capacity relations in a flat quadrilateral”, Sib. Math. J., 49:4 (2008), 709–717 | DOI | Zbl