Iteratively regularized Gauss--Newton method in the inverse problem of ionospheric radiosonding
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1153-1164.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the problem of reconstructing the vertical profile of the electron concentration of the ionosphere. The profile is reconstructed based on the results of measuring the incident phase of the probing signal from a moving satellite. The simplest measurement model with a single point of signal reception is adopted. The model under investigation takes into account the curvature of the probe beam when passing through the inhomogeneous ionosphere. The problem is reduced to a nonlinear integral equation. We prove that the resulting equation has a non–unique solution. To approximate the solution closest to the selected initial approximation, an iteratively regularized Gauss–Newton method is used with a projection on the set defined by a priori constraints on the solution. The results of numerical experiments are presented.
Keywords: nonlinear equation, irregular equation, iterative regularization, ionosphere, radiotomography.
@article{SEMR_2021_18_2_a60,
     author = {M. Yu. Kokurin and A. E. Nedopekin},
     title = {Iteratively regularized {Gauss--Newton} method in the inverse problem of ionospheric radiosonding},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1153--1164},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a60/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
AU  - A. E. Nedopekin
TI  - Iteratively regularized Gauss--Newton method in the inverse problem of ionospheric radiosonding
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1153
EP  - 1164
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a60/
LA  - en
ID  - SEMR_2021_18_2_a60
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%A A. E. Nedopekin
%T Iteratively regularized Gauss--Newton method in the inverse problem of ionospheric radiosonding
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1153-1164
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a60/
%G en
%F SEMR_2021_18_2_a60
M. Yu. Kokurin; A. E. Nedopekin. Iteratively regularized Gauss--Newton method in the inverse problem of ionospheric radiosonding. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1153-1164. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a60/

[1] V.E. Kunitsyn, E.D. Tereshchenko, E.S. Andreeva, I.A. Nesterov, “Satellite radio probing and the radio tomography of the ionosphere”, Phys. Usp., 53:5 (2010), 523–528 | DOI

[2] F.B. Chernyi, Propagation of Radio Waves, Soviet Radio, M., 1972

[3] K. Davies, Ionospheric Radio Waves, Blaisdell Publishing Company, Waltham, 1969

[4] S.I. Kabanikhin, Inverse and ill-posed problems. Theory and applications, Walter de Gruyter, Berlin, 2012 | Zbl

[5] V. Ye. Kunitsyn, Ye.D. Tereshchenko, Ionospheric Tomography, Springer, Berlin, 2003

[6] V.I. Bogachev, O.G. Smolyanov, Real and functional analysis, Moscow Lectures, 4, Springer, Cham, 2020 | DOI | Zbl

[7] M.A. Krasnoselskii, G.M. Vainikko, P.P. Zabreiko, Ya.B. Rutitskii, V. Ya. Stetsenko, Approximate solution of operator equations, Walters-Noordhoff Publishing, Groningen, 1972 | Zbl

[8] J.E. Dennis jun., R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, New Jersey, 1983 | Zbl

[9] A.B. Bakushinsky, M. Yu. Kokurin, A. Smirnova, Iterative methods for ill-posed problems. An introduction, Walter de Gruyter, Berlin, 2011 | Zbl

[10] A. Bakushinsky, M. Yu. Kokurin, M.M. Kokurin, Regularization algorithms for ill-posed problems, Walter de Gruyter, Berlin, 2018 | Zbl

[11] A.D. Ioffe, V.M. Tihomirov, Theory of extremal problems, North-Holland, Amsterdam, 1979 | Zbl

[12] A.B. Bakushinsky, M. Yu. Kokurin, Algorithmic Analysis of Irregular Operator Equations, LENAND, M., 2012