Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a58, author = {V. N. Belykh}, title = {On the question of good conditionality of unsaturated quadrature formulas}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1083--1097}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a58/} }
TY - JOUR AU - V. N. Belykh TI - On the question of good conditionality of unsaturated quadrature formulas JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1083 EP - 1097 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a58/ LA - ru ID - SEMR_2021_18_2_a58 ER -
V. N. Belykh. On the question of good conditionality of unsaturated quadrature formulas. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1083-1097. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a58/
[1] V.L. Vaskevich, Guaranteed accuracy of the calculation of multidimensional integrals, D. Sc. dissertation, Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2003 | Zbl
[2] N.S. Bachvalov, Numerical methods. Analysis, algebra, ordinary differential equations, Mir, M., 1976 | Zbl
[3] K.I. Babenko, Foundations of numerical analysis, Nauka, M., 1986 ; 2nd ed., Regulyarnaya i Khaoticheskaya Dinamika, M.–Izhevsk, 2002 | Zbl
[4] V.N. Belykh, “Nonsaturable quadrature formulas on an interval (on Babenko's problem)”, Dokl. Math., 93:2 (2016), 197–201 | DOI | Zbl
[5] S.K. Godunov, A.G. Antonov, O.P. Kirilyuk, V.I. Kostin, Guaranteed accuracy in numerical linear algebra, Math. Appl., 252, Kluwer Acad. Publ., Dordrecht, 1993 | Zbl
[6] G. Szego, Orthogonal polynomials, Fizmatlit, M., 1962 | Zbl
[7] I.K. Daugavet, Introduction in the classical theory of function approximation, St Petersburg State University, St Petersburg, 2011
[8] V.N. Belykh, “Peculiarities of the numerical realization of nonsaturable quadrature formulas on a finite interval”, Sib. Math. J., 58:5 (2017), 778–785 | DOI | Zbl
[9] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin etc, 1966 | Zbl
[10] A.K. Varma, P. Vertesi, “Some Erdös-Feldheim type teorems on mean convergence of Lagrange interpolation”, J. Math. Anal. Appl., 91 (1983), 68–79 | DOI | Zbl
[11] H.F. Sinwel, “Uniform approximation of differentiable functions by algebraic polynomials”, J. Approx. Theory, 32:1 (1981), 1–8 | DOI | Zbl
[12] V.N. Belykh, “The problem of constructing unsaturated quadrature formulas on an interval”, Sb. Math., 210:1 (2019), 24–58 | DOI | Zbl