On the question of good conditionality of unsaturated quadrature formulas
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1083-1097.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient sign of good conditionality (resistance to rounding errors) of unsaturated quadrature formulas with a weight function from the Lebesgue space $L_p , 1$ on a finite segment is indicated.
Keywords: unsaturation, rounding errors.
Mots-clés : quadrature formula
@article{SEMR_2021_18_2_a58,
     author = {V. N. Belykh},
     title = {On the question of good conditionality of unsaturated quadrature formulas},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1083--1097},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a58/}
}
TY  - JOUR
AU  - V. N. Belykh
TI  - On the question of good conditionality of unsaturated quadrature formulas
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1083
EP  - 1097
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a58/
LA  - ru
ID  - SEMR_2021_18_2_a58
ER  - 
%0 Journal Article
%A V. N. Belykh
%T On the question of good conditionality of unsaturated quadrature formulas
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1083-1097
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a58/
%G ru
%F SEMR_2021_18_2_a58
V. N. Belykh. On the question of good conditionality of unsaturated quadrature formulas. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1083-1097. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a58/

[1] V.L. Vaskevich, Guaranteed accuracy of the calculation of multidimensional integrals, D. Sc. dissertation, Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2003 | Zbl

[2] N.S. Bachvalov, Numerical methods. Analysis, algebra, ordinary differential equations, Mir, M., 1976 | Zbl

[3] K.I. Babenko, Foundations of numerical analysis, Nauka, M., 1986 ; 2nd ed., Regulyarnaya i Khaoticheskaya Dinamika, M.–Izhevsk, 2002 | Zbl

[4] V.N. Belykh, “Nonsaturable quadrature formulas on an interval (on Babenko's problem)”, Dokl. Math., 93:2 (2016), 197–201 | DOI | Zbl

[5] S.K. Godunov, A.G. Antonov, O.P. Kirilyuk, V.I. Kostin, Guaranteed accuracy in numerical linear algebra, Math. Appl., 252, Kluwer Acad. Publ., Dordrecht, 1993 | Zbl

[6] G. Szego, Orthogonal polynomials, Fizmatlit, M., 1962 | Zbl

[7] I.K. Daugavet, Introduction in the classical theory of function approximation, St Petersburg State University, St Petersburg, 2011

[8] V.N. Belykh, “Peculiarities of the numerical realization of nonsaturable quadrature formulas on a finite interval”, Sib. Math. J., 58:5 (2017), 778–785 | DOI | Zbl

[9] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin etc, 1966 | Zbl

[10] A.K. Varma, P. Vertesi, “Some Erdös-Feldheim type teorems on mean convergence of Lagrange interpolation”, J. Math. Anal. Appl., 91 (1983), 68–79 | DOI | Zbl

[11] H.F. Sinwel, “Uniform approximation of differentiable functions by algebraic polynomials”, J. Approx. Theory, 32:1 (1981), 1–8 | DOI | Zbl

[12] V.N. Belykh, “The problem of constructing unsaturated quadrature formulas on an interval”, Sb. Math., 210:1 (2019), 24–58 | DOI | Zbl