An application of the Chebyshev collocation method for the calculation of a mass flux in a long concentric annular channel
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 805-816.

Voir la notice de l'article provenant de la source Math-Net.Ru

A rarefied gas flow through a long concentric annular channel due to pressure gradient is studied on the basis of the linearized BGK model of the Boltzmann kinetic equation using a Chebyshev collocation method. The method is based on the approximation by the truncated Chebyshev series. The linearized BGK model kinetic equation and boundary conditions are transformed into a matrix equation, which corresponds to a system of linear algebraic equations with the values of the unknown function at the Chebyshev collocation points. The mass flux is calculated as a function of the rarefaction parameter. The accuracy of the results is validated in several ways, including the recovery of the analytical solutions at the hydrodynamic and free molecular limits.
Keywords: linearized BGK model kinetic equation, model of diffuse reflection, collocation method, Chebyshev polynomials.
@article{SEMR_2021_18_2_a57,
     author = {O. V. Germider and V. N. Popov},
     title = {An application of the {Chebyshev} collocation method for the calculation of a mass flux in a long concentric annular channel},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {805--816},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a57/}
}
TY  - JOUR
AU  - O. V. Germider
AU  - V. N. Popov
TI  - An application of the Chebyshev collocation method for the calculation of a mass flux in a long concentric annular channel
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 805
EP  - 816
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a57/
LA  - en
ID  - SEMR_2021_18_2_a57
ER  - 
%0 Journal Article
%A O. V. Germider
%A V. N. Popov
%T An application of the Chebyshev collocation method for the calculation of a mass flux in a long concentric annular channel
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 805-816
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a57/
%G en
%F SEMR_2021_18_2_a57
O. V. Germider; V. N. Popov. An application of the Chebyshev collocation method for the calculation of a mass flux in a long concentric annular channel. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 805-816. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a57/

[1] P. Taheri, H. Struchtrup, “Poiseuille flow of moderately rarefied gases in annular channels”, Int. J. Heat Mass Transfer, 55:4 (2012), 1291–1303 | DOI | Zbl

[2] Y. Sone, Molecular gas dynamics. Theory, techniques, and applications, Birkhauser, Boston, 2007 | Zbl

[3] F. Sharipov, Rarefied gas dynamics: Fundamentals for research and practice, Wiley-VCH, Weinheim, 2016

[4] G. Breyiannis, S. Varoutis, D. Valougeorgis, “Rarefied gas flow in concentric annular tube: Estimation of the Poiseuille number and the exact hydraulic diameter”, Eur. J. Mech. B, Fluids, 27:5 (2008), 609–622 | DOI | Zbl

[5] M. Hadj-Nacer, D. Maharjan, M. Ho, S.K. Stefanov, I. Graur, M. Greiner, “Continuum and kinetic simulations of heat transfer trough rarefied gas in annular and planar geometries in the slip regime”, J. Heat Transfer, 139:4 (2017), 042002 | DOI

[6] V.A. Titarev, “Implicit high-order method for calculating rarefied gas flow in a planar microchannel”, J. Comput. Phys., 231:1 (2012), 109–134 | DOI | Zbl

[7] O.V. Germider, V.N. Popov, “An application of the Chebyshev polynomials for the calculation of a rarefied gas flow in the cylindrical geometry of the channels”, Sib. Électron Mat. Izv., 16 (2019), 1947–1959 | DOI | Zbl

[8] O.V. Germider, V.N. Popov, “Nonisothermal rarefied gas flow through a long cylindrical channel under arbitrary pressure and temperature drops”, Fluid Dynamics, 55:3 (2020), 407–422 | DOI | Zbl

[9] O.V. Germider, V.N. Popov, “A collocation method for linear ellipsoidal model kinetic equation in a circular tube”, J. Phys.: Conf. Ser., 1560 (2020), 1560–012019

[10] D. Valougeorgis, N. Vasileiadis, V. Titarev, “Validity range of linear kinetic modeling in rarefied pressure driven single gas flows through circular capillaries”, Eur. J. Mech., B, Fluids, 64 (2017), 2–7 | DOI | Zbl

[11] J. Mason, D. Handscomb, Chebyshev polynomials, CRC Press, Boca Raton, 2003 | Zbl

[12] P.L. Bhatnagar, E.P. Gross, M.A. Krook, “A model for collision processes in gases. I: Small amplitude processes in charged and neutral one-component systems”, Phys. Rev., II. Ser., 94 (1954), 511–525 | Zbl

[13] E.M. Shakhov, “Rarefied gas flow between coaxial cylinders”, Comput. Math. Math. Phys., 43:7 (2003), 1059–1068 | Zbl

[14] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Pergamon, Oxford etc, 1987 | Zbl

[15] F.M. Sharipov, V.D. Seleznev, Motion of Rarefied Gases in Channels and Microchannels, UrO RAN, Yekaterinburg, 2008

[16] I. Graur, F. Sharipov, “Gas flow through an elliptical tube over the whole range of the gas rarefaction”, Eur. J. Mech., R', Fluids, 27:3 (2008), 335–345 | DOI | Zbl