Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a57, author = {O. V. Germider and V. N. Popov}, title = {An application of the {Chebyshev} collocation method for the calculation of a mass flux in a long concentric annular channel}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {805--816}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a57/} }
TY - JOUR AU - O. V. Germider AU - V. N. Popov TI - An application of the Chebyshev collocation method for the calculation of a mass flux in a long concentric annular channel JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 805 EP - 816 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a57/ LA - en ID - SEMR_2021_18_2_a57 ER -
%0 Journal Article %A O. V. Germider %A V. N. Popov %T An application of the Chebyshev collocation method for the calculation of a mass flux in a long concentric annular channel %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 805-816 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a57/ %G en %F SEMR_2021_18_2_a57
O. V. Germider; V. N. Popov. An application of the Chebyshev collocation method for the calculation of a mass flux in a long concentric annular channel. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 805-816. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a57/
[1] P. Taheri, H. Struchtrup, “Poiseuille flow of moderately rarefied gases in annular channels”, Int. J. Heat Mass Transfer, 55:4 (2012), 1291–1303 | DOI | Zbl
[2] Y. Sone, Molecular gas dynamics. Theory, techniques, and applications, Birkhauser, Boston, 2007 | Zbl
[3] F. Sharipov, Rarefied gas dynamics: Fundamentals for research and practice, Wiley-VCH, Weinheim, 2016
[4] G. Breyiannis, S. Varoutis, D. Valougeorgis, “Rarefied gas flow in concentric annular tube: Estimation of the Poiseuille number and the exact hydraulic diameter”, Eur. J. Mech. B, Fluids, 27:5 (2008), 609–622 | DOI | Zbl
[5] M. Hadj-Nacer, D. Maharjan, M. Ho, S.K. Stefanov, I. Graur, M. Greiner, “Continuum and kinetic simulations of heat transfer trough rarefied gas in annular and planar geometries in the slip regime”, J. Heat Transfer, 139:4 (2017), 042002 | DOI
[6] V.A. Titarev, “Implicit high-order method for calculating rarefied gas flow in a planar microchannel”, J. Comput. Phys., 231:1 (2012), 109–134 | DOI | Zbl
[7] O.V. Germider, V.N. Popov, “An application of the Chebyshev polynomials for the calculation of a rarefied gas flow in the cylindrical geometry of the channels”, Sib. Électron Mat. Izv., 16 (2019), 1947–1959 | DOI | Zbl
[8] O.V. Germider, V.N. Popov, “Nonisothermal rarefied gas flow through a long cylindrical channel under arbitrary pressure and temperature drops”, Fluid Dynamics, 55:3 (2020), 407–422 | DOI | Zbl
[9] O.V. Germider, V.N. Popov, “A collocation method for linear ellipsoidal model kinetic equation in a circular tube”, J. Phys.: Conf. Ser., 1560 (2020), 1560–012019
[10] D. Valougeorgis, N. Vasileiadis, V. Titarev, “Validity range of linear kinetic modeling in rarefied pressure driven single gas flows through circular capillaries”, Eur. J. Mech., B, Fluids, 64 (2017), 2–7 | DOI | Zbl
[11] J. Mason, D. Handscomb, Chebyshev polynomials, CRC Press, Boca Raton, 2003 | Zbl
[12] P.L. Bhatnagar, E.P. Gross, M.A. Krook, “A model for collision processes in gases. I: Small amplitude processes in charged and neutral one-component systems”, Phys. Rev., II. Ser., 94 (1954), 511–525 | Zbl
[13] E.M. Shakhov, “Rarefied gas flow between coaxial cylinders”, Comput. Math. Math. Phys., 43:7 (2003), 1059–1068 | Zbl
[14] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Pergamon, Oxford etc, 1987 | Zbl
[15] F.M. Sharipov, V.D. Seleznev, Motion of Rarefied Gases in Channels and Microchannels, UrO RAN, Yekaterinburg, 2008
[16] I. Graur, F. Sharipov, “Gas flow through an elliptical tube over the whole range of the gas rarefaction”, Eur. J. Mech., R', Fluids, 27:3 (2008), 335–345 | DOI | Zbl