Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a55, author = {V. N. Starovoitov}, title = {Solvability of a boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1714--1719}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a55/} }
TY - JOUR AU - V. N. Starovoitov TI - Solvability of a boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1714 EP - 1719 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a55/ LA - ru ID - SEMR_2021_18_2_a55 ER -
%0 Journal Article %A V. N. Starovoitov %T Solvability of a boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1714-1719 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a55/ %G ru %F SEMR_2021_18_2_a55
V. N. Starovoitov. Solvability of a boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1714-1719. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a55/
[1] V.N. Starovoitov, B.N. Starovoitova, “Modeling the dynamics of polymer chains in water solution. Application to sensor design”, J. Phys.: Conf. Ser., 894 (2017), 012088 | DOI
[2] A.Sh. Lyubanova, “On nonlocal problems for systems of parabolic equations”, J. Math. Anal. Appl., 421:2 (2015), 1767–1778 | DOI | MR | Zbl
[3] V.N. Starovoitov, “Initial boundary value problem for a nonlocal in time parabolic equation”, Sib. Èlektron. Mat. Izv., 15 (2018), 1311–1319 | MR | Zbl
[4] V.N. Starovoitov, “Boundary value problem for a global-in-time parabolic equation”, Math. Methods Appl. Sci., 44:1 (2021), 1118–1126 | DOI | MR | Zbl
[5] C. Walker, “Strong solutions to a nonlocal-in-time semilinear heat equation”, Q. Appl. Math., 79:2 (2021), 265–272 | DOI | MR | Zbl
[6] J.D. Djida, G.F.F. Gounoue, Y.K. Tchaptchie, A global in time parabolic equation for symmetric Lévy operators, 2021, arXiv: 2102.07278
[7] V.N. Starovoitov, “Weak solvability of a boundary value problem for a parabolic equation with a global-in-time term that contains a weighted integral”, J. Elliptic Parabol. Equ., 7:2 (2021), 623–634 | DOI | MR | Zbl
[8] L.C. Evans, Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, 1998 | MR | Zbl