Mots-clés : variable coefficients
@article{SEMR_2021_18_2_a54,
author = {I. I. Matveeva},
title = {Estimates for solutions to one class of nonlinear nonautonomous systems with time-varying concentrated and distributed delays},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1689--1697},
year = {2021},
volume = {18},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a54/}
}
TY - JOUR AU - I. I. Matveeva TI - Estimates for solutions to one class of nonlinear nonautonomous systems with time-varying concentrated and distributed delays JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1689 EP - 1697 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a54/ LA - en ID - SEMR_2021_18_2_a54 ER -
%0 Journal Article %A I. I. Matveeva %T Estimates for solutions to one class of nonlinear nonautonomous systems with time-varying concentrated and distributed delays %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1689-1697 %V 18 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a54/ %G en %F SEMR_2021_18_2_a54
I. I. Matveeva. Estimates for solutions to one class of nonlinear nonautonomous systems with time-varying concentrated and distributed delays. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1689-1697. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a54/
[1] N.V. Azbelev, Selected Works, Inst. Computer. Issled., M.–Izhevsk, 2012
[2] W. Michiels, S.I. Niculescu, Stability, control, and computation of time-delay systems. An eigenvalue based approach, Advances in Design and Control, 27, Soc. Indust. Appl. Math., Philadelphia, 2014 | MR | Zbl
[3] R.P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation theory of functional differential equations with applications, Springer, Berlin, 2012 | MR | Zbl
[4] V.L. Kharitonov, Time-delay systems. Lyapunov functionals and matrices, Control Engineering, Birkhäuser, Springer, New York, 2013 | MR | Zbl
[5] M.I. Gil', Stability of neutral functional differential equations, Atlantis Studies in Differential Equations, 3, Atlantis Press, Amsterdam, 2014 | DOI | MR | Zbl
[6] I.I. Matveeva, “Estimates for solutions to a class of nonautonomous systems of neutral type with unbounded delay”, Sib. Math. J., 62:3 (2021), 468–481 | DOI | Zbl
[7] I.I. Matveeva, “Estimates of the exponential decay of solutions to linear systems of neutral type with periodic coefficients”, J. Appl. Ind. Math., 13:3 (2019), 511–518 | DOI | MR | Zbl
[8] Ph. Hartman, Ordinary differential equations, Wiley, New York etc, 1964 | MR | Zbl