Estimates for solutions to one class of nonlinear nonautonomous systems with time-varying concentrated and distributed delays
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1689-1697.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of nonlinear systems of nonautonomous differential equations with time-varying concentrated and distributed delays than can be unbounded. Using a Lyapunov – Krasovskii functional, some estimates of solutions are established. The obtained estimates allow us to conclude whether the solutions are stable. In the case of exponential and asymptotic stability, stabilization rates of the solutions at infinity are pointed out.
Keywords: time-varying delay systems, estimates for solutions, stability, Lyapunov – Krasovskii functional.
Mots-clés : variable coefficients
@article{SEMR_2021_18_2_a54,
     author = {I. I. Matveeva},
     title = {Estimates for solutions to one class of nonlinear nonautonomous systems with time-varying concentrated and distributed delays},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1689--1697},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a54/}
}
TY  - JOUR
AU  - I. I. Matveeva
TI  - Estimates for solutions to one class of nonlinear nonautonomous systems with time-varying concentrated and distributed delays
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1689
EP  - 1697
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a54/
LA  - en
ID  - SEMR_2021_18_2_a54
ER  - 
%0 Journal Article
%A I. I. Matveeva
%T Estimates for solutions to one class of nonlinear nonautonomous systems with time-varying concentrated and distributed delays
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1689-1697
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a54/
%G en
%F SEMR_2021_18_2_a54
I. I. Matveeva. Estimates for solutions to one class of nonlinear nonautonomous systems with time-varying concentrated and distributed delays. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1689-1697. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a54/

[1] N.V. Azbelev, Selected Works, Inst. Computer. Issled., M.–Izhevsk, 2012

[2] W. Michiels, S.I. Niculescu, Stability, control, and computation of time-delay systems. An eigenvalue based approach, Advances in Design and Control, 27, Soc. Indust. Appl. Math., Philadelphia, 2014 | MR | Zbl

[3] R.P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation theory of functional differential equations with applications, Springer, Berlin, 2012 | MR | Zbl

[4] V.L. Kharitonov, Time-delay systems. Lyapunov functionals and matrices, Control Engineering, Birkhäuser, Springer, New York, 2013 | MR | Zbl

[5] M.I. Gil', Stability of neutral functional differential equations, Atlantis Studies in Differential Equations, 3, Atlantis Press, Amsterdam, 2014 | DOI | MR | Zbl

[6] I.I. Matveeva, “Estimates for solutions to a class of nonautonomous systems of neutral type with unbounded delay”, Sib. Math. J., 62:3 (2021), 468–481 | DOI | Zbl

[7] I.I. Matveeva, “Estimates of the exponential decay of solutions to linear systems of neutral type with periodic coefficients”, J. Appl. Ind. Math., 13:3 (2019), 511–518 | DOI | MR | Zbl

[8] Ph. Hartman, Ordinary differential equations, Wiley, New York etc, 1964 | MR | Zbl