On the existence of global solution of the system of equations of one-dimensional motion of a viscous liquid in a deformable viscous porous medium
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1397-1422.

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial-boundary value problem for the system of one-dimensional motion of a viscous liquid in a deformable viscous porous medium is considered. Local theorem of existence and uniqueness of the problem is proved in the case of compressible liquid. In the case of incompressible liquid the theorem of global solvability in time is proved in Holder classes.
Keywords: Darcy's law, poroelasticity, global solvability, porosity.
Mots-clés : filtration
@article{SEMR_2021_18_2_a51,
     author = {M. A. Tokareva and A. A. Papin},
     title = {On the existence of global solution of the system of equations of one-dimensional motion of a viscous liquid in a deformable viscous porous medium},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1397--1422},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a51/}
}
TY  - JOUR
AU  - M. A. Tokareva
AU  - A. A. Papin
TI  - On the existence of global solution of the system of equations of one-dimensional motion of a viscous liquid in a deformable viscous porous medium
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1397
EP  - 1422
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a51/
LA  - en
ID  - SEMR_2021_18_2_a51
ER  - 
%0 Journal Article
%A M. A. Tokareva
%A A. A. Papin
%T On the existence of global solution of the system of equations of one-dimensional motion of a viscous liquid in a deformable viscous porous medium
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1397-1422
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a51/
%G en
%F SEMR_2021_18_2_a51
M. A. Tokareva; A. A. Papin. On the existence of global solution of the system of equations of one-dimensional motion of a viscous liquid in a deformable viscous porous medium. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1397-1422. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a51/

[1] Poromechanics IV, Proceedings of the Fourth Biot Conference on Poromechanics, Including the Second Frank L. DiMaggio Symposium, Columbia University, New York, 2009

[2] Poromechanics VI, Proceedings of the sixth Biot Conference on Poromechanics, American Society of Civil Engineers, Reston, Virginia, 2017

[3] S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary value problems in the mechanics of inhomogeneous fluids, Nauka, Novosibirsk, 1983 | Zbl

[4] A.N. Konovalov, “On some questions arising in numerical solution of two-phase incompressible fluid filtration problems”, Tr. Mat. Inst. Steklova, 122, 1973, 3–23 | Zbl

[5] K. Terzaghi, Theoretical soil mechanics, John Wiley, New York, 1943

[6] M.A. Biot, “General theory of three-dimensional consolidation”, J. Appl. Physics, Lancaster Pa., 12 (1941), 155–164 | DOI | Zbl

[7] J.I. Frenkel, “To the theory of seismic and seismoelectric phenomena in humid soil”, Izv. Akad. Nauk USSR, Ser. Geograf. Geofiz., 8:4 (1944), 133–150 | Zbl

[8] P.P. Zolotarev, “Propagation of sound waves in a gas-saturated porous medium with a rigid skeleton”, Inzh. Zh., 4 (1964), 111–120

[9] V.N. Nikolaevskii, “On the propagation of longitudinal waves in fluid-saturated elastic porous media”, Inzh. Zh., 3 (1963), 251–261 | Zbl

[10] Kh.A. Rakhmatulin, “Foundations of the gas dynamics of interpenetrating motions of compressible media”, Prikl. Mat. Mekh., 20 (1956), 184–195 | Zbl

[11] O.B. Bocharov, “On the filtration of two immiscible fluids in a compressible layer”, Kraevye Zadachi dlya Uravnenij Gidrodinamiki, Din. Sploshnoj Sredy, 50 (1981), 15–36 | Zbl

[12] V.V. Vedernikov, V.N. Nikolaevsii, “Mechanics equations for porous medium saturated by a two-phase liquid”, Fluid Dyn., 13 (1979), 769–773 | DOI | Zbl

[13] O.B. Bocharov, V. Ya. Rudyak, A.V. Seryakov, “Simplest deformation models of a fluid-saturated poroelastic medium”, J. Min. Sci., 50 (2014), 235–248 | DOI

[14] O.B. Bocharov, V. Ya. Rudyak, A.V. Seryakov, “Hierarchical sequence of models and deformation peculiarities of porous media saturated with fluids”, Proceedings of the XLI Summer School-Conference Advanced Problems in Mechanics, APM-2013 (1–6 July, St-Petersburg), 183–190

[15] A.M. Abourabia, K.M. Hassan, A.M. Morad, “Analytical solutions of the magma equations for molten rocks in a granular matrix”, Chaos Solitons Fractals, 42:2 (2009), 1170–1180 | DOI | Zbl

[16] Y. Geng, L. Zhang, “Bifurcations of traveling wave solutions for the magma equation”, Appl. Math. Comput., 217:4 (2010), 1741–1748 | Zbl

[17] G. Simpson, M. Spiegelman, M.I. Weinstein, “Degenerate dispersive equations arising in the study of magma dynamics”, Nonlinearity, 20:1 (2007), 21–49 | DOI | Zbl

[18] A.S. Saad, B. Saad, M. Saad, “Numerical study of compositional compressible degenerate two-phase flow in saturated-unsaturated heterogeneous porous media”, Comput. Math. Appl., 71:2 (2016), 565–584 | DOI | Zbl

[19] J. Bear, Dynamics of fluids in porous media, Elsevier, New York, 1972 | Zbl

[20] O. Coussy, Poromechanics, John Wiley and Sons, Chichester, U.K., 2004

[21] C. Morency, R.S. Huismans, C. Beaumont, P. Fullsack, “A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability”, Journal of Geophysical Research, 112:B10 (2007)

[22] A.W. Scempton, “Effective stress in soils, concrete and rocks”, Proceeding of the Conference on Pore Pressure and Suction in soils, Butterworths, London, 1960, 4–16

[23] L.F. Athy, “Density, porosity, and compaction of sedimentary rocks”, Amer. Ass. Petrol. Geol. Bull., 14:1 (1930), 1–24

[24] J.A.D. Connolly, Y.Y. Podladchikov, “Compaction-driven fluid flow in viscoelastic rock”, Geodin. Acta, 11:2 (1998), 55–84 | DOI

[25] D.M. Audet, A.C. Fowler, “A mathematical model for compaction in sedimentary basins”, Geophys. J. Int., 110 (1992), 577–590 | DOI

[26] A.C. Fowler, “Pressure solution and viscous compaction in sedimentary basins”, J. Geophys. Res., 104:B6 (1999), 12989–12997 | DOI

[27] F. Schneider, J.L. Potdevin, S. Wolf, I. Faille, “Mechanical and chemical compaction model for sedimentary basin simulators”, Tectonophysics, 263:1–4 (1996), 307–317 | DOI

[28] D.P. McKenzie, “The generation and compaction of partial molten rock”, J. Petrol., 25:3 (1984), 713–765 | DOI

[29] R.A. Birchwood, D.L. Turcotte, “A unified approach to geopressuring, low-permeability zone formation, and secondary porosity generation in sedimentary basins”, J. Geophys. Res., 99:B10 (1994), 20051–20058 | DOI

[30] B.S. Massey, Mechanics of fluids, Van Nostrand Reinhold Publ. Co., New York etc, 1983 | Zbl

[31] A. Fowler, Mathematical geoscience, Springer, Berlin, 2011 | Zbl

[32] L.S. Kuchment, V.N. Demidov, Y.G. Motovilov, River flow formation. Physical and mathematical models, Nauka, M., 1983

[33] J.A.D. Connolly, Y.Y. Podladchikov, “Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins”, Tectonophysics, 324:3 (2000), 137–168 | DOI

[34] R.E. Grimm, S.C. Solomon, “Viscous relaxation of impact crater relief on Venus: Constraints on crustal thickness and thermal gradient”, J. Geophys. Research, 93 (1988), 11911–11929 | DOI

[35] X.S. Yang, “Nonlinear viscoelastic compaction in sedimentary basins”, Nonlin. Proceeses Geophys., 7 (2000), 1–8 | DOI

[36] M.N. Koleva, L.G. Vulkov, “Numerical analysis of one dimensional motion of magma without mass forces”, J. Comput. Appl. Math., 366 (2020), 112338 | DOI | Zbl

[37] M.A. Tokareva, “Localization of solutions of the equations of filtration in poroelastic medium”, J. Sib. Fed. Univ., Math. Phys., 8:4 (2015), 467–477 | DOI | Zbl

[38] A.A. Papin, M.A. Tokareva, “Correctness of the initial-boundary problem of the compressible fluid filtration in a viscous porous medium”, J. Phys.: Conf. Ser., 894 (2017), 012070 | DOI

[39] A.A. Papin, I.G. Akhmerova, “Solvability of the system of equations of one-dimensional motion of a heat-conducting two-phase mixture”, Math. Notes, 87:2 (2010), 230–243 | DOI | Zbl

[40] A.A. Papin, I.G. Akhmerova, “Solvability of the boundary-value problem for equations of one-dimensional motion of a two-phase mixture”, Math Notes, 96:2 (2014), 166–179 | Zbl

[41] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and quasilinear equations of parabolic type, Nauka, M., 1967 | Zbl

[42] M.A. Tokareva, “Solvability of initial boundary value problem for the equations of filtration in poroelastic media”, J. Phys.: Conf. Ser., 722 (2016), 012037 | DOI

[43] A.A. Papin, M.A. Tokareva, “On local solvability of the system of the equations of one dimensional motion of magma”, J. Sib. Fed. Univ., Math. Phys., 10:3 (2017), 385–395 | DOI | Zbl

[44] P.I. Lizorkin, A course of differential and integral equations with additional chapters of analysis, Nauka, 1981

[45] M.A. Tokareva, A.A. Papin, “Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium”, J. Appl. Ind. Math., 13:2 (2019), 350–362 | DOI | Zbl