Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a51, author = {M. A. Tokareva and A. A. Papin}, title = {On the existence of global solution of the system of equations of one-dimensional motion of a viscous liquid in a deformable viscous porous medium}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1397--1422}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a51/} }
TY - JOUR AU - M. A. Tokareva AU - A. A. Papin TI - On the existence of global solution of the system of equations of one-dimensional motion of a viscous liquid in a deformable viscous porous medium JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1397 EP - 1422 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a51/ LA - en ID - SEMR_2021_18_2_a51 ER -
%0 Journal Article %A M. A. Tokareva %A A. A. Papin %T On the existence of global solution of the system of equations of one-dimensional motion of a viscous liquid in a deformable viscous porous medium %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1397-1422 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a51/ %G en %F SEMR_2021_18_2_a51
M. A. Tokareva; A. A. Papin. On the existence of global solution of the system of equations of one-dimensional motion of a viscous liquid in a deformable viscous porous medium. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1397-1422. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a51/
[1] Poromechanics IV, Proceedings of the Fourth Biot Conference on Poromechanics, Including the Second Frank L. DiMaggio Symposium, Columbia University, New York, 2009
[2] Poromechanics VI, Proceedings of the sixth Biot Conference on Poromechanics, American Society of Civil Engineers, Reston, Virginia, 2017
[3] S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary value problems in the mechanics of inhomogeneous fluids, Nauka, Novosibirsk, 1983 | Zbl
[4] A.N. Konovalov, “On some questions arising in numerical solution of two-phase incompressible fluid filtration problems”, Tr. Mat. Inst. Steklova, 122, 1973, 3–23 | Zbl
[5] K. Terzaghi, Theoretical soil mechanics, John Wiley, New York, 1943
[6] M.A. Biot, “General theory of three-dimensional consolidation”, J. Appl. Physics, Lancaster Pa., 12 (1941), 155–164 | DOI | Zbl
[7] J.I. Frenkel, “To the theory of seismic and seismoelectric phenomena in humid soil”, Izv. Akad. Nauk USSR, Ser. Geograf. Geofiz., 8:4 (1944), 133–150 | Zbl
[8] P.P. Zolotarev, “Propagation of sound waves in a gas-saturated porous medium with a rigid skeleton”, Inzh. Zh., 4 (1964), 111–120
[9] V.N. Nikolaevskii, “On the propagation of longitudinal waves in fluid-saturated elastic porous media”, Inzh. Zh., 3 (1963), 251–261 | Zbl
[10] Kh.A. Rakhmatulin, “Foundations of the gas dynamics of interpenetrating motions of compressible media”, Prikl. Mat. Mekh., 20 (1956), 184–195 | Zbl
[11] O.B. Bocharov, “On the filtration of two immiscible fluids in a compressible layer”, Kraevye Zadachi dlya Uravnenij Gidrodinamiki, Din. Sploshnoj Sredy, 50 (1981), 15–36 | Zbl
[12] V.V. Vedernikov, V.N. Nikolaevsii, “Mechanics equations for porous medium saturated by a two-phase liquid”, Fluid Dyn., 13 (1979), 769–773 | DOI | Zbl
[13] O.B. Bocharov, V. Ya. Rudyak, A.V. Seryakov, “Simplest deformation models of a fluid-saturated poroelastic medium”, J. Min. Sci., 50 (2014), 235–248 | DOI
[14] O.B. Bocharov, V. Ya. Rudyak, A.V. Seryakov, “Hierarchical sequence of models and deformation peculiarities of porous media saturated with fluids”, Proceedings of the XLI Summer School-Conference Advanced Problems in Mechanics, APM-2013 (1–6 July, St-Petersburg), 183–190
[15] A.M. Abourabia, K.M. Hassan, A.M. Morad, “Analytical solutions of the magma equations for molten rocks in a granular matrix”, Chaos Solitons Fractals, 42:2 (2009), 1170–1180 | DOI | Zbl
[16] Y. Geng, L. Zhang, “Bifurcations of traveling wave solutions for the magma equation”, Appl. Math. Comput., 217:4 (2010), 1741–1748 | Zbl
[17] G. Simpson, M. Spiegelman, M.I. Weinstein, “Degenerate dispersive equations arising in the study of magma dynamics”, Nonlinearity, 20:1 (2007), 21–49 | DOI | Zbl
[18] A.S. Saad, B. Saad, M. Saad, “Numerical study of compositional compressible degenerate two-phase flow in saturated-unsaturated heterogeneous porous media”, Comput. Math. Appl., 71:2 (2016), 565–584 | DOI | Zbl
[19] J. Bear, Dynamics of fluids in porous media, Elsevier, New York, 1972 | Zbl
[20] O. Coussy, Poromechanics, John Wiley and Sons, Chichester, U.K., 2004
[21] C. Morency, R.S. Huismans, C. Beaumont, P. Fullsack, “A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability”, Journal of Geophysical Research, 112:B10 (2007)
[22] A.W. Scempton, “Effective stress in soils, concrete and rocks”, Proceeding of the Conference on Pore Pressure and Suction in soils, Butterworths, London, 1960, 4–16
[23] L.F. Athy, “Density, porosity, and compaction of sedimentary rocks”, Amer. Ass. Petrol. Geol. Bull., 14:1 (1930), 1–24
[24] J.A.D. Connolly, Y.Y. Podladchikov, “Compaction-driven fluid flow in viscoelastic rock”, Geodin. Acta, 11:2 (1998), 55–84 | DOI
[25] D.M. Audet, A.C. Fowler, “A mathematical model for compaction in sedimentary basins”, Geophys. J. Int., 110 (1992), 577–590 | DOI
[26] A.C. Fowler, “Pressure solution and viscous compaction in sedimentary basins”, J. Geophys. Res., 104:B6 (1999), 12989–12997 | DOI
[27] F. Schneider, J.L. Potdevin, S. Wolf, I. Faille, “Mechanical and chemical compaction model for sedimentary basin simulators”, Tectonophysics, 263:1–4 (1996), 307–317 | DOI
[28] D.P. McKenzie, “The generation and compaction of partial molten rock”, J. Petrol., 25:3 (1984), 713–765 | DOI
[29] R.A. Birchwood, D.L. Turcotte, “A unified approach to geopressuring, low-permeability zone formation, and secondary porosity generation in sedimentary basins”, J. Geophys. Res., 99:B10 (1994), 20051–20058 | DOI
[30] B.S. Massey, Mechanics of fluids, Van Nostrand Reinhold Publ. Co., New York etc, 1983 | Zbl
[31] A. Fowler, Mathematical geoscience, Springer, Berlin, 2011 | Zbl
[32] L.S. Kuchment, V.N. Demidov, Y.G. Motovilov, River flow formation. Physical and mathematical models, Nauka, M., 1983
[33] J.A.D. Connolly, Y.Y. Podladchikov, “Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins”, Tectonophysics, 324:3 (2000), 137–168 | DOI
[34] R.E. Grimm, S.C. Solomon, “Viscous relaxation of impact crater relief on Venus: Constraints on crustal thickness and thermal gradient”, J. Geophys. Research, 93 (1988), 11911–11929 | DOI
[35] X.S. Yang, “Nonlinear viscoelastic compaction in sedimentary basins”, Nonlin. Proceeses Geophys., 7 (2000), 1–8 | DOI
[36] M.N. Koleva, L.G. Vulkov, “Numerical analysis of one dimensional motion of magma without mass forces”, J. Comput. Appl. Math., 366 (2020), 112338 | DOI | Zbl
[37] M.A. Tokareva, “Localization of solutions of the equations of filtration in poroelastic medium”, J. Sib. Fed. Univ., Math. Phys., 8:4 (2015), 467–477 | DOI | Zbl
[38] A.A. Papin, M.A. Tokareva, “Correctness of the initial-boundary problem of the compressible fluid filtration in a viscous porous medium”, J. Phys.: Conf. Ser., 894 (2017), 012070 | DOI
[39] A.A. Papin, I.G. Akhmerova, “Solvability of the system of equations of one-dimensional motion of a heat-conducting two-phase mixture”, Math. Notes, 87:2 (2010), 230–243 | DOI | Zbl
[40] A.A. Papin, I.G. Akhmerova, “Solvability of the boundary-value problem for equations of one-dimensional motion of a two-phase mixture”, Math Notes, 96:2 (2014), 166–179 | Zbl
[41] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and quasilinear equations of parabolic type, Nauka, M., 1967 | Zbl
[42] M.A. Tokareva, “Solvability of initial boundary value problem for the equations of filtration in poroelastic media”, J. Phys.: Conf. Ser., 722 (2016), 012037 | DOI
[43] A.A. Papin, M.A. Tokareva, “On local solvability of the system of the equations of one dimensional motion of magma”, J. Sib. Fed. Univ., Math. Phys., 10:3 (2017), 385–395 | DOI | Zbl
[44] P.I. Lizorkin, A course of differential and integral equations with additional chapters of analysis, Nauka, 1981
[45] M.A. Tokareva, A.A. Papin, “Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium”, J. Appl. Ind. Math., 13:2 (2019), 350–362 | DOI | Zbl