Finding the parameters of exponential estimates of solutions to the Cauchy problem for some systems of linear delay differential equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1307-1318.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of constructing component-wise exponentially decreasing estimates of the solution to the Cauchy problem for systems of linear delay differential equations. Systems of differential equations contain matrices of a special type and belong to the systems of Wazewski type equations. The properties of nonsingular M-matrices, methods and algorithms for finding the roots of nonlinear equations are used. Examples of the study of specific systems of differential equations are presented.
Keywords: delay differential equation, systems of Wazewski differential equations, nonsingular M-matrix, component-wise exponentially decreasing estimates, linear and nonlinear mathematical models of living systems.
Mots-clés : nonnegative matrix
@article{SEMR_2021_18_2_a50,
     author = {N. V. Pertsev and K. K. Loginov},
     title = {Finding the parameters of exponential estimates of solutions to the {Cauchy} problem for some systems of linear delay differential equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1307--1318},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a50/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - K. K. Loginov
TI  - Finding the parameters of exponential estimates of solutions to the Cauchy problem for some systems of linear delay differential equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1307
EP  - 1318
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a50/
LA  - ru
ID  - SEMR_2021_18_2_a50
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A K. K. Loginov
%T Finding the parameters of exponential estimates of solutions to the Cauchy problem for some systems of linear delay differential equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1307-1318
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a50/
%G ru
%F SEMR_2021_18_2_a50
N. V. Pertsev; K. K. Loginov. Finding the parameters of exponential estimates of solutions to the Cauchy problem for some systems of linear delay differential equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1307-1318. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a50/

[1] N.V. Pertsev, “Two-sided estimates for solutions to the Cauchy problem for Wazewski linear differential systems with delay”, Sib. Math. J., 54:6 (2013), 1088–1097 | DOI | Zbl

[2] N. V. Pertsev, “Application of M-matrices in construction of exponential estimates for solutions to the Cauchy problem for systems of linear difference and differential equations”, Sib. Adv. Math., 24:4 (2014), 240–260 | DOI | Zbl

[3] N. V. Pertsev, “Exponential decay estimates for some components of solutions to the nonlinear delay differential equations of the living system models”, Sib. Math. J., 61:4 (2020), 715–724 | DOI | Zbl

[4] N. V. Pertsev, “On exponentially decreasing estimates of solutions to nonlinear delay functional differential equations used in population dynamics models”, Dyn. Syst., Simferopol', 10(38):1 (2020), 70–83 | Zbl

[5] N. V. Pertsev, “Construction of exponentially decreasing estimates of solutions to a Cauchy problem for some nonlinear systems of delay differential equations”, Sib. Électron. Math. Izv., 18 (2021), 579–598 | DOI | Zbl

[6] A. Mazanov, “Stability of multi-pool models with lags”, J. Theor. Biol., 59:2 (1976), 429–442 | DOI | MR

[7] I. Gyori, J. Eller, “Compartmental systems with pipes”, Math. Biosci., 53 (1981), 223–247 | DOI | Zbl

[8] W.M. Haddad, V. Chellaboina, “Stability theory for nonnegative and compartmental dynamical systems with time delay”, Syst. Control Lett., 51:5 (2004), 355–361 | DOI | Zbl

[9] V.B. Kolmanovskij, V.R. Nosov, Stability and periodic regimes of control systems with aftereffect, Nauka, M., 1981 | Zbl

[10] J.K. Hale, Theory of functional differential equations, Springer-Verlag, New York etc, 1977 | Zbl

[11] A. Yu. Obolenskii, “Stability of solutions of autonomous Wazewski systems with delayed action”, Ukr. Math. J., 35:5 (1983), 486–492 | DOI | Zbl

[12] F.R. Gantmakher, The Theory of Matrices, v. 1, 2, AMS, Chelsea Publishing, Providence, 1998 | Zbl | Zbl

[13] A. Berman, R.J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, New York etc, 1979 | Zbl

[14] V.V. Voevodin, Yu.A. Kuznetsov, Matrices and calculations, Nauka, M., 1984 | Zbl

[15] R. Bellman, Introduction to matrix analysis, McGraw-Hill Book Company, New York etc, 1970 | Zbl

[16] J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York-London, 1970 | Zbl