Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a48, author = {L. N. Bondar and V. Nurmakhmatov}, title = {On solvability of the boundary value problem for one pseudohyperbolic equation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1046--1057}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a48/} }
TY - JOUR AU - L. N. Bondar AU - V. Nurmakhmatov TI - On solvability of the boundary value problem for one pseudohyperbolic equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1046 EP - 1057 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a48/ LA - en ID - SEMR_2021_18_2_a48 ER -
%0 Journal Article %A L. N. Bondar %A V. Nurmakhmatov %T On solvability of the boundary value problem for one pseudohyperbolic equation %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1046-1057 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a48/ %G en %F SEMR_2021_18_2_a48
L. N. Bondar; V. Nurmakhmatov. On solvability of the boundary value problem for one pseudohyperbolic equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1046-1057. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a48/
[1] S.L. Sobolev, Selected works of S.L. Sobolev, v. I, Equations of mathematical physics, computational mathematics, and cubature formulas, Springer, New York, 2006 | Zbl
[2] G.V. Demidenko, S.V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker, New York, 2003 | Zbl
[3] G.V. Demidenko, “Solvability conditions of the Cauchy problem for pseudohyperbolic equations”, Sib. Math. J., 56:6 (2015), 1028–1041 | DOI | Zbl
[4] G.V. Demidenko, “On solvability of the Cauchy problem for pseudohyperbolic equations”, Sib. Adv. Math., 11:4 (2001), 25–40 | Zbl
[5] Kh.G. Umarov, “Cauchy problem for the torsional vibration equation of a nonlinear-elastic rod of infinite length”, Mech. Solids, 54:5 (2019), 726–740 | DOI | Zbl
[6] I. Fedotov, L.R. Volevich, “The Cauchy problem for hyperbolic equations not resolved with respect to the highest time derivative”, Russ. J. Math. Phys., 13:3 (2006), 278–292 | DOI | Zbl
[7] I. Fedotov, M. Shatalov, J. Marais, “Hyperbolic and pseudo-hyperbolic equations in the theory of vibration”, Acta Mech., 227:11 (2016), 3315–3324 | DOI | Zbl
[8] S.I. Gerasimov, V.I. Erofeev, Problems of wave dynamics for structural elements, Ross. Fed. Yad. Tsentr-Vseross. Nauchn.-Issled. Inst. Eksp. Fiz., Sarov, 2014
[9] V.Z. Vlasov, Thin-walled elastic beams, National Science Foundation, 1961
[10] R.E.D. Bishop, “Longitudinal waves in beams”, Aero. Quart., 3:4 (1952), 280–293 | DOI | MR
[11] J.S. Rao, Advanced theory of vibration, Wiley Eastern, New Delhi, 1992
[12] G.V. Demidenko, Sobolev spaces and generalized solutions, NSU, Novosibirsk, 2015
[13] V.P. Mikhailov, Partial differential equations, Mir, M., 1978 | MR
[14] S.L. Sobolev, Introduction to the theory of cubature formulas, Nauka, M., 1974 | Zbl
[15] V.A. Trenogin, Functional analysis, Nauka, M., 1980 | Zbl
[16] K. Yosida, Functional analysis, Springer-Verlag, Berlin, 1994 | Zbl
[17] S.V. Uspenskii, G.V. Demidenko, V.G. Perepelkin, Imbedding theorems and applications to differential equations, Nauka, Novosibirsk, 1984 | Zbl