A problem of normal oscillations of a system of bodies partially filled with ideal fluids under the action of an elastic damping device
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 997-1014.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a problem of normal oscillations of a system of bodies partially filled with ideal fluids under the action of an elastic damping device. We prove that the problem has a discrete spectrum localized in a vertical strip. The asymptotic behavior of the spectrum is investigated. The theorem on the Abel-Lidsky basis property of root elements of the problem is proved.
Keywords: system of bodies, ideal fluid, elastic damping device, basis of Abel-Lidsky, spectrum.
@article{SEMR_2021_18_2_a47,
     author = {D. A. Zakora and K. V. Forduk},
     title = {A problem of normal oscillations of a system of bodies partially filled with ideal fluids under the action of an elastic damping device},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {997--1014},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a47/}
}
TY  - JOUR
AU  - D. A. Zakora
AU  - K. V. Forduk
TI  - A problem of normal oscillations of a system of bodies partially filled with ideal fluids under the action of an elastic damping device
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 997
EP  - 1014
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a47/
LA  - en
ID  - SEMR_2021_18_2_a47
ER  - 
%0 Journal Article
%A D. A. Zakora
%A K. V. Forduk
%T A problem of normal oscillations of a system of bodies partially filled with ideal fluids under the action of an elastic damping device
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 997-1014
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a47/
%G en
%F SEMR_2021_18_2_a47
D. A. Zakora; K. V. Forduk. A problem of normal oscillations of a system of bodies partially filled with ideal fluids under the action of an elastic damping device. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 997-1014. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a47/

[1] M.S. Agranovich, Sobolev spaces, their generalizations and elliptic problems in smooth and Lipschitz domains, Springer, Cham, 2015 | Zbl

[2] M.S. Agranovich, “Elliptic operators on closed manifolds”, Partial differential equations, v. VI, Encycl. Math. Sci., 63, Elliptic operators on closed manifolds, 1994, 1–130 | Zbl

[3] M. Sh. Birman, M.Z. Solomyak, “Asymptotic behavior of the spectrum of differential equations”, J. Sov. Math., 12:3 (1979), 247–283 | DOI | Zbl

[4] I. Ts. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, 18, AMS, Providence, 1969 | DOI | Zbl

[5] K.V. Forduk, D.A. Zakora, “Problem on small motions of a system of bodies filled with ideal fluids under the action of an elastic damping device”, Lobachevskii J. Math., 42:5 (2021), 889–900 | DOI | Zbl

[6] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin etc, 1980 | Zbl

[7] A.N. Kolmogorov, S.V. Fomin, Elements of the theory of functions and functional analysis, Mir, M., 1982 | Zbl

[8] N.D. Kopachevsky, S.G. Krein, Ngo Zuy Kan, Operator methods in hydrodynamics. Evolutionary and spectral problems, Nauka, M., 1989 | Zbl

[9] N.D. Kopachevsky, S.G. Krein, Operator approach to linear problems of hydrodynamics, v. 1, Operator Theory: Advances and Applications, 128, Self-adjoint problems for an ideal fluid, Birkhäuser, Basel, 2001 | Zbl

[10] N.D. Kopachevsky, S.G. Krein, Operator approach to linear problems of hydrodynamics, v. 2, Operator Theory: Advances and Applications, 146, Nonself-adjoint problems for viscous fluids, Birkhäuser, Basel, 2003 | Zbl

[11] N.D. Kopachevsky, E.V. Syomkina, K.V. Forduk, “On oscillations of a body partially filled with a fluid under the action of an elastic damping device”, Mathematics informatics computer science modeling education, MICME-2019_1, v. 1, 2019, 35–39

[12] N.D. Kopachevsky, E.V. Plohaya, K.V. Forduk, “On oscillations of a body partially filled with a fluid under the action of an elastic damping device”, The International Conference "Crimea Autumn Mathematical School-2019", v. 1, 2019, 176–179

[13] N.D. Kopachevsky, V.I. Voytitsky, “On small oscillations of three joined pendulums with cavities filled with homogeneous ideal fluids”, Sib. Élektron. Mat. Izv., 17 (2020), 260–299 | DOI | Zbl

[14] N.D. Kopachevsky, V.I. Voytitsky, Z.Z. Sitshaeva, “On oscillations of two connected pendulums containing cavities partially filled with incompressible fluid”, Sovrem. Mat. Fundam. Napravl., 63, no. 4, 2017, 627–677 | MR

[15] N.D. Kopachevsky, D.O. Tsvetkov, “Small motions of ideal stratified liquid with a free surface totally covered by a crumbled ice”, Ufa Math. J., 10:3 (2018), 43–58 | DOI | Zbl

[16] S.G. Krein, N.N. Moiseev, “On oscillations of a vessel containing a liquid with a free surface”, Prikl. Mat. Mekh., 21:2 (1957), 169–174 | MR

[17] A.S. Markus, V.I. Matsaev, “A theorem on comparison of spectra and spectral asymptotics for a Keldysh pencil”, Mat. Sb., N. Ser., 123(165):3 (1984), 391–406 | Zbl

[18] A.S. Markus, Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs, 71, AMS, Providence, 1988 | Zbl

[19] N.N. Moiseev, V.V. Rumyantsev, Dynamics of bodies with fluid-filled cavities, Nauka, M., 1965 | Zbl

[20] N.N. Moiseev, “Motion of a rigid body having a hollow partly filled by an ideal liquid”, Dokl. Akad. Nauk SSSR, 85:4 (1952), 719–722 | Zbl

[21] N.N. Moiseev, “The problem of the motion of a rigid body containing a liquid mass having a free surface”, Mat. Sb. (N.S.), 32(74):1 (1953), 61–96 | Zbl

[22] G.S. Narimanov, “On the motion of a rigid body of which a cavity is partly filled with a fluid”, Prikl. Mat. Mekh., 20:1 (1956), 21–38 | Zbl

[23] D.E. Okhochimskij, “Theory of the motion of a body with cavities partly filled with a liquid”, Prikl. Mat. Mekh., 20:1 (1956), 3–20 | Zbl

[24] M.B. Orazov, Some questions of the spectral theory of non-self-adjoint operators and related problems from mechanics, Dissert. D-ra Fiz.-Mat. Nauk, Ashgabat, 1982

[25] M.B. Orazov, “Localization of the spectrum in the problem of normal oscillations of an elastic shell filled with a viscous incompressible fluid”, U.S.S.R. Comput. Math. Math. Phys., 25:2 (1985), 52–58 | DOI | Zbl

[26] L.N. Sretenskiy, “Oscillation of liquid in a moving vessel”, Dokl. Akad. Nauk SSSR, 10 (1951), 1483–1494

[27] D.O. Tsvetkov, “Small motions of an ideal stratified fluid partially covered with elastic ice”, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 28:3 (2018), 328–347 | DOI | Zbl

[28] D.O. Tsvetkov, “Small motions of an ideal stratified fluid with a free surface completely covered with the elastic ice”, Sib. Élektron. Mat. Izv., 15 (2018), 422–435 | Zbl

[29] D.O. Tsvetkov, “Crumbled ice on the surface of a multilayered fluid”, Sib. Élektron. Mat. Izv., 17 (2020), 777–801 | DOI | Zbl

[30] N.E. Zhukovskii, “On motion of solid body with cavities filled with homogeneous drip fluid”, Izbrannye socineniya, v. 1, OGIZ, M.–L., 1948, 31–52 | MR