Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. Case of the Cauchy problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 827-833.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider The Cauchy problem for the wave equation with an unknown right hand side, that rapidly oscillates in time. This right hand side is reconstructed from the three-term asymptotics of a solution, which are given at one point of the domain. In this case, an approach developed earlier by one of the authors of this article is used to solve the inverse problems with rapidly oscillating data.
Keywords: wave equation, Cauchy problem, asymptotics of a solution, reconstruction of an unknown high-frequency source term.
@article{SEMR_2021_18_2_a45,
     author = {E. V. Korablina and V. B. Levenshtam},
     title = {Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. {Case} of the {Cauchy} problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {827--833},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a45/}
}
TY  - JOUR
AU  - E. V. Korablina
AU  - V. B. Levenshtam
TI  - Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. Case of the Cauchy problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 827
EP  - 833
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a45/
LA  - en
ID  - SEMR_2021_18_2_a45
ER  - 
%0 Journal Article
%A E. V. Korablina
%A V. B. Levenshtam
%T Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. Case of the Cauchy problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 827-833
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a45/
%G en
%F SEMR_2021_18_2_a45
E. V. Korablina; V. B. Levenshtam. Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. Case of the Cauchy problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 827-833. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a45/

[1] P.V. Babich, V.B. Levenshtam, “Direct and inverse asymptotic problems high-frequency terms”, Asymptotic Anal., 97:3–4 (2016), 329–336 | DOI | Zbl

[2] P.V. Babich, V.B. Levenshtam, S.P. Prika, “Recovery of a rapidly oscillating source in the heat equation from solution asymptotics”, Comput. Math. Math. Phys., 57:12 (2017), 1908–1918 | DOI | Zbl

[3] P.V. Babich, V.B. Levenshtam, “Recovery of a rapidly oscillating absolute term in the multidimensional hyperbolic equation”, Math. Notes, 104:4 (2018), 489–497 | DOI | Zbl

[4] V.B. Levenshtam, “Parabolic equations with large parameters. Inverse problems”, Math Notes, 107:3 (2020), 452–463 | DOI | Zbl

[5] P.V. Babich, V.B. Levenshtam, “Inverse problem in the multidimensional hyperbolic equation with rapidly oscillating absolute term”, Operator Theory and Differential Equations, eds. A.G.Kusraev, Z.D. Totieva, Birkhäuser, Cham, 2021, 7–25 | DOI

[6] M.M. Lavret'ev, K.G. Reznitskaya, V.G. Yakhno, One-dimensional inverse problems of mathematical physics, Nauka, Novosibirsk, 1982 | Zbl

[7] V.G. Romanov, Inverse problems of mathematical physics, Nauka, M., 1984 | Zbl

[8] A.M. Denisov, Elements of the theory of inverse problems, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1999 | Zbl

[9] S.I. Kabanikhin, Inverse and ill-posed problems. Theory and applications, Inverse and Ill-Posed Problems Series, 55, de Gruyter, Berlin, 2012 | Zbl

[10] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in mathematical physics, Pure and Applied Mathematics, 231, Marcel Dekker, New York, 2000 | Zbl

[11] A.O. Vatulyan, Inverse problems in mechanics of deformable solids, Phizmatlit, M., 2007