Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a45, author = {E. V. Korablina and V. B. Levenshtam}, title = {Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. {Case} of the {Cauchy} problem}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {827--833}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a45/} }
TY - JOUR AU - E. V. Korablina AU - V. B. Levenshtam TI - Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. Case of the Cauchy problem JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 827 EP - 833 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a45/ LA - en ID - SEMR_2021_18_2_a45 ER -
%0 Journal Article %A E. V. Korablina %A V. B. Levenshtam %T Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. Case of the Cauchy problem %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 827-833 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a45/ %G en %F SEMR_2021_18_2_a45
E. V. Korablina; V. B. Levenshtam. Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. Case of the Cauchy problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 827-833. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a45/