Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a45, author = {E. V. Korablina and V. B. Levenshtam}, title = {Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. {Case} of the {Cauchy} problem}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {827--833}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a45/} }
TY - JOUR AU - E. V. Korablina AU - V. B. Levenshtam TI - Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. Case of the Cauchy problem JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 827 EP - 833 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a45/ LA - en ID - SEMR_2021_18_2_a45 ER -
%0 Journal Article %A E. V. Korablina %A V. B. Levenshtam %T Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. Case of the Cauchy problem %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 827-833 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a45/ %G en %F SEMR_2021_18_2_a45
E. V. Korablina; V. B. Levenshtam. Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. Case of the Cauchy problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 827-833. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a45/
[1] P.V. Babich, V.B. Levenshtam, “Direct and inverse asymptotic problems high-frequency terms”, Asymptotic Anal., 97:3–4 (2016), 329–336 | DOI | Zbl
[2] P.V. Babich, V.B. Levenshtam, S.P. Prika, “Recovery of a rapidly oscillating source in the heat equation from solution asymptotics”, Comput. Math. Math. Phys., 57:12 (2017), 1908–1918 | DOI | Zbl
[3] P.V. Babich, V.B. Levenshtam, “Recovery of a rapidly oscillating absolute term in the multidimensional hyperbolic equation”, Math. Notes, 104:4 (2018), 489–497 | DOI | Zbl
[4] V.B. Levenshtam, “Parabolic equations with large parameters. Inverse problems”, Math Notes, 107:3 (2020), 452–463 | DOI | Zbl
[5] P.V. Babich, V.B. Levenshtam, “Inverse problem in the multidimensional hyperbolic equation with rapidly oscillating absolute term”, Operator Theory and Differential Equations, eds. A.G.Kusraev, Z.D. Totieva, Birkhäuser, Cham, 2021, 7–25 | DOI
[6] M.M. Lavret'ev, K.G. Reznitskaya, V.G. Yakhno, One-dimensional inverse problems of mathematical physics, Nauka, Novosibirsk, 1982 | Zbl
[7] V.G. Romanov, Inverse problems of mathematical physics, Nauka, M., 1984 | Zbl
[8] A.M. Denisov, Elements of the theory of inverse problems, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1999 | Zbl
[9] S.I. Kabanikhin, Inverse and ill-posed problems. Theory and applications, Inverse and Ill-Posed Problems Series, 55, de Gruyter, Berlin, 2012 | Zbl
[10] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in mathematical physics, Pure and Applied Mathematics, 231, Marcel Dekker, New York, 2000 | Zbl
[11] A.O. Vatulyan, Inverse problems in mechanics of deformable solids, Phizmatlit, M., 2007