Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a39, author = {A. A. Makhnev and M. S. Nirova}, title = {Distance-regular {Terwilliger} graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1075--1082}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a39/} }
TY - JOUR AU - A. A. Makhnev AU - M. S. Nirova TI - Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1075 EP - 1082 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a39/ LA - ru ID - SEMR_2021_18_2_a39 ER -
%0 Journal Article %A A. A. Makhnev %A M. S. Nirova %T Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1075-1082 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a39/ %G ru %F SEMR_2021_18_2_a39
A. A. Makhnev; M. S. Nirova. Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1075-1082. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a39/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc, 1989 | Zbl
[2] A.A. Makhnev, “Graphs in which neighborhoods of vertices are isomorphic to the Hoffman-Singleton graph”, Proc. Steklov Inst. Math., 267, Suppl. 1 (2009), S128–S148 | Zbl
[3] A.L. Gavrilyuk, A.A. Makhnev, “On distance-regular graphs in which the neighborhood of each vertex is isomorphic to the Hoffman-Singleton graph”, Dokl. Math., 80:2 (2009), 665–668 | DOI | Zbl
[4] A.L. Gavrilyuk, Wenbin Guo, A.A. Makhnev, “Automorphisms of Terwilliger graphs with $\mu = 2$”, Algebra Logik, 47:5 (2008), 330–339 | DOI | Zbl
[5] K. Coolsaet, A. Jurišić, “Using equality in the Krein conditions to prove nonexistence of sertain distance-regular graphs”, J. Comb. Theory, Ser. A, 115:6 (2008), 1086–1095 | DOI | Zbl