@article{SEMR_2021_18_2_a39,
author = {A. A. Makhnev and M. S. Nirova},
title = {Distance-regular {Terwilliger} graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1075--1082},
year = {2021},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a39/}
}
TY - JOUR
AU - A. A. Makhnev
AU - M. S. Nirova
TI - Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2021
SP - 1075
EP - 1082
VL - 18
IS - 2
UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a39/
LA - ru
ID - SEMR_2021_18_2_a39
ER -
%0 Journal Article
%A A. A. Makhnev
%A M. S. Nirova
%T Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1075-1082
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a39/
%G ru
%F SEMR_2021_18_2_a39
A. A. Makhnev; M. S. Nirova. Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1075-1082. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a39/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc, 1989 | Zbl
[2] A.A. Makhnev, “Graphs in which neighborhoods of vertices are isomorphic to the Hoffman-Singleton graph”, Proc. Steklov Inst. Math., 267, Suppl. 1 (2009), S128–S148 | Zbl
[3] A.L. Gavrilyuk, A.A. Makhnev, “On distance-regular graphs in which the neighborhood of each vertex is isomorphic to the Hoffman-Singleton graph”, Dokl. Math., 80:2 (2009), 665–668 | DOI | Zbl
[4] A.L. Gavrilyuk, Wenbin Guo, A.A. Makhnev, “Automorphisms of Terwilliger graphs with $\mu = 2$”, Algebra Logik, 47:5 (2008), 330–339 | DOI | Zbl
[5] K. Coolsaet, A. Jurišić, “Using equality in the Krein conditions to prove nonexistence of sertain distance-regular graphs”, J. Comb. Theory, Ser. A, 115:6 (2008), 1086–1095 | DOI | Zbl