Path partitioning planar graphs with restrictions on short cycles
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 975-984

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $a$ and $b$ be positive intergers. An $(a,b)$-partition of a graph is a partition of its vertex set into two subsets so that in the subgraph induced by the first subset each path contains at most $a$ vertices while in the subgraph induced by the second subset each path contains at most $b$ vertices. A graph $G$ is $\tau$-partitionable if it has an $(a,b)$-partition for any pair $a,b$ such that $a+b$ equals to the number of vertices in the longest path in $G$. The celebrated Path Partition Conjecture of Lovász and Mihók ($1981$) states that every graph is $\tau$-partitionable. In $2018$, Glebov and Zambalaeva proved the Conjecture for triangle-free planar graphs where cycles of length $4$ have no common edges with cycles of length $4$ and $5$. The purpose of this paper is to generalize this result by proving that every planar graph in which cycles of length $4$ to $7$ have no chords while $3$-cycles have no common vertices with cycles of length $3$ and $4$ is $\tau$-partitionable.
Keywords: graph, planar graph, girth, path partition, $\tau$-partitionable graph
Mots-clés : Path Partition Conjecture.
@article{SEMR_2021_18_2_a37,
     author = {A. N. Glebov},
     title = {Path partitioning planar graphs with restrictions on short cycles},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {975--984},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a37/}
}
TY  - JOUR
AU  - A. N. Glebov
TI  - Path partitioning planar graphs with restrictions on short cycles
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 975
EP  - 984
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a37/
LA  - ru
ID  - SEMR_2021_18_2_a37
ER  - 
%0 Journal Article
%A A. N. Glebov
%T Path partitioning planar graphs with restrictions on short cycles
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 975-984
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a37/
%G ru
%F SEMR_2021_18_2_a37
A. N. Glebov. Path partitioning planar graphs with restrictions on short cycles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 975-984. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a37/