On PL embeddings of a 2-sphere in the 4-dimensional Euclidean space
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 867-883
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that there is no 2-convex $ PL $ embedding of $S^2$ in $ E^4$ in the form of a polyhedron, each vertex of which is incident to no more than 5 edges.
Keywords:
polyhedron, PL embedding, Euclidean space.
@article{SEMR_2021_18_2_a28,
author = {D. V. Bolotov},
title = {On {PL} embeddings of a 2-sphere in the 4-dimensional {Euclidean} space},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {867--883},
year = {2021},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a28/}
}
D. V. Bolotov. On PL embeddings of a 2-sphere in the 4-dimensional Euclidean space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 867-883. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a28/