On PL embeddings of a 2-sphere in the 4-dimensional Euclidean space
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 867-883.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there is no 2-convex $ PL $ embedding of $S^2$ in $ E^4$ in the form of a polyhedron, each vertex of which is incident to no more than 5 edges.
Keywords: polyhedron, PL embedding, Euclidean space.
@article{SEMR_2021_18_2_a28,
     author = {D. V. Bolotov},
     title = {On {PL} embeddings of a 2-sphere in the 4-dimensional {Euclidean} space},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {867--883},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a28/}
}
TY  - JOUR
AU  - D. V. Bolotov
TI  - On PL embeddings of a 2-sphere in the 4-dimensional Euclidean space
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 867
EP  - 883
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a28/
LA  - ru
ID  - SEMR_2021_18_2_a28
ER  - 
%0 Journal Article
%A D. V. Bolotov
%T On PL embeddings of a 2-sphere in the 4-dimensional Euclidean space
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 867-883
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a28/
%G ru
%F SEMR_2021_18_2_a28
D. V. Bolotov. On PL embeddings of a 2-sphere in the 4-dimensional Euclidean space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 867-883. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a28/

[1] Yu.B. Zelinskii, Convexity. Selected chapters, Instytut Matematyky NAN Ukrainy, Kyiv, 2012 | Zbl

[2] D.V. Bolotov, “On embeddings of $S^2$ in $E^4$”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 11 (2013), 19–22 (Russian) | MR | Zbl