Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a26, author = {I. Kh. Sabitov}, title = {New proofs of infinitesimal rigidity of convex polyhedra and convex surfaces of revolution}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {740--743}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a26/} }
TY - JOUR AU - I. Kh. Sabitov TI - New proofs of infinitesimal rigidity of convex polyhedra and convex surfaces of revolution JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 740 EP - 743 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a26/ LA - ru ID - SEMR_2021_18_2_a26 ER -
%0 Journal Article %A I. Kh. Sabitov %T New proofs of infinitesimal rigidity of convex polyhedra and convex surfaces of revolution %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 740-743 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a26/ %G ru %F SEMR_2021_18_2_a26
I. Kh. Sabitov. New proofs of infinitesimal rigidity of convex polyhedra and convex surfaces of revolution. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 740-743. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a26/
[1] N.V. Efimov, “Qualitative problems on the theorie of deformations of surfaces”, Usp. Mat. Nauk, 3:2(24) (1948), 47–158 | MR | Zbl
[2] I. Ivanova-Karatopraklieva, I. Kh. Sabitov, “Surface deformation. I”, J. Math. Sci., New York, 70:2 (1994), 1685–1710 | DOI | Zbl
[3] A.D. Alexandrov, “About the infinitesimal bending of non-regular surfaces”, Rec. Math. Moscou, n. Ser., 1 (1936), 307–322 | Zbl
[4] E. Andreichin, I. Kh. Sabitov, “Generalization of Rembs' theorem to general convex surfaces of revolution”, Ukr. Geom. Sb., 26 (1983), 13–24 | MR | Zbl
[5] I. Ivanova-Karatopraklieva, I. Kh. Sabitov, “Bending of surfaces. II”, J. Math. Sci., New York, 74:3 (1995), 997–1043 | DOI | MR | Zbl