Harris ergodicity of a Split Transmission Control Protocol
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1493-1505.

Voir la notice de l'article provenant de la source Math-Net.Ru

Additive-increase multiplicative-decrease transmission control protocols are well known and have been studied in numerous papers. It is significantly more difficult to study systems of interacting protocols. We consider a queueing system where both the input intensity and the service intensity follow TCP protocols and the dynamics of the latter depends on both intensities. This type of stochastic system was proposed by Baccelli, Carofiglio and Foss in 2009, who have proved the positive recurrence of the underlying Markov chain and studied a number of statistical properties of the model. In this paper, we introduce a more general stochastic model and prove a stronger statement: the Harris ergodicity of the corresponding Markov chain.
Keywords: split TCP, Harris ergodicity.
Mots-clés : Markov chains
@article{SEMR_2021_18_2_a23,
     author = {S. G. Foss and M. G. Chebunin},
     title = {Harris ergodicity of a {Split} {Transmission} {Control} {Protocol}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1493--1505},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a23/}
}
TY  - JOUR
AU  - S. G. Foss
AU  - M. G. Chebunin
TI  - Harris ergodicity of a Split Transmission Control Protocol
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1493
EP  - 1505
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a23/
LA  - ru
ID  - SEMR_2021_18_2_a23
ER  - 
%0 Journal Article
%A S. G. Foss
%A M. G. Chebunin
%T Harris ergodicity of a Split Transmission Control Protocol
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1493-1505
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a23/
%G ru
%F SEMR_2021_18_2_a23
S. G. Foss; M. G. Chebunin. Harris ergodicity of a Split Transmission Control Protocol. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1493-1505. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a23/

[1] A.Al. Hanbali, E. Altman, P. Nain, “A survey of TCP over ad hoc networks”, IEEE Communications, Surveys and Tutorials, 7:3 (2005), 22–36 | DOI

[2] F. Baccelli, G. Carofiglio, S. Foss, “Proxy caching in split TCP: dynamics, stability and tail asymptotics”, From semantics to computer science, Essays in honour of Gilles Kahn, eds. Y. Bertot et al., Cambridge University Press, Cambridge, 2009, 437–464 | DOI | MR | Zbl

[3] A. Borovkov, S. Foss, “Stochastically recursive sequences and their generalizations”, Sib. Adv. Math., 2:1 (1992), 16–81 | MR | Zbl

[4] S. Asmussen, Applied probability and queues, Springer, New York, 2003 | MR | Zbl

[5] S. Foss, T. Konstantopoulos, “An overview of some stochastic stability methods”, J. Oper. Res. Soc. Japan, 47:4 (2004), 275–303 | MR | Zbl

[6] S. Foss, N. Chernova, Stability of random processes, Novosibirsk State University, 2020