Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a21, author = {A. V. Logachov and A. A. Mogulskii}, title = {The moderate deviations principle for the trajectories of compound renewal processes on the half -- line}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1189--1200}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a21/} }
TY - JOUR AU - A. V. Logachov AU - A. A. Mogulskii TI - The moderate deviations principle for the trajectories of compound renewal processes on the half -- line JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1189 EP - 1200 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a21/ LA - en ID - SEMR_2021_18_2_a21 ER -
%0 Journal Article %A A. V. Logachov %A A. A. Mogulskii %T The moderate deviations principle for the trajectories of compound renewal processes on the half -- line %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1189-1200 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a21/ %G en %F SEMR_2021_18_2_a21
A. V. Logachov; A. A. Mogulskii. The moderate deviations principle for the trajectories of compound renewal processes on the half -- line. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1189-1200. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a21/
[1] A.A. Borovkov, Compound renewal processes, M., 2020 | Zbl
[2] A.A. Borovkov, Asymptotic analysis of random walks: light-tailed distributions, Cambridge University Press, Cambridge, 2020 | Zbl
[3] A.V. Logachov, A.A. Mogulskii, “Anscombe-type theorem and moderate deviations for trajectories of a compound renewal process”, J. Math. Sci., New York, 229:1 (2018), 36–50 | DOI | Zbl
[4] F.C. Klebaner, A.V. Logachov, A.A. Mogulskii, “Large deviations for processes on half-line”, Electron. Commun. Probab., 20 (2015), 75, 1–14 | DOI | Zbl
[5] F.C. Klebaner, A.A. Mogulskii, “Large deviations for processes on half-line: random walk and compound Poisson”, Sib. Électron. Mat. Izv., 16 (2019), 1–20 | DOI | Zbl
[6] F.C. Klebaner, A.V. Logachov, A.A. Mogulskii, “Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line”, Probl. Inf. Transm., 56:1 (2020), 56–72 | DOI | Zbl
[7] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Springer, New York, 1998 | Zbl
[8] J.L. Doob, Stochastic processes, Wiley, New York, 1953 | Zbl
[9] P. Billingsley, Convergence of probability measures, John Wiley and Sons, New York etc, 1968 | Zbl
[10] J. Feng, T. Kurtz, Large deviations for stochastic processes, Mathematical Surveys and Monographs, 131, AMS, Providence, 2006 | DOI | Zbl
[11] A.D. Wentzell, Limit theorems on large deviations for Markov stochastic processes, Mathematics and Its Applications. Soviet Series, 38, Kluwer, Dordrecht etc., 1990 | Zbl