The moderate deviations principle for the trajectories of compound renewal processes on the half -- line
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1189-1200.

Voir la notice de l'article provenant de la source Math-Net.Ru

The moderate deviations principle is obtained for the trajectories of compound renewal processes on the half – line under the Cramèr moment condition.
Keywords: large deviations principle, moderate deviations principle, compound renewal process, Cramer’s condition, rate function.
@article{SEMR_2021_18_2_a21,
     author = {A. V. Logachov and A. A. Mogulskii},
     title = {The moderate deviations principle for the trajectories of compound renewal processes on the half -- line},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1189--1200},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a21/}
}
TY  - JOUR
AU  - A. V. Logachov
AU  - A. A. Mogulskii
TI  - The moderate deviations principle for the trajectories of compound renewal processes on the half -- line
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1189
EP  - 1200
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a21/
LA  - en
ID  - SEMR_2021_18_2_a21
ER  - 
%0 Journal Article
%A A. V. Logachov
%A A. A. Mogulskii
%T The moderate deviations principle for the trajectories of compound renewal processes on the half -- line
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1189-1200
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a21/
%G en
%F SEMR_2021_18_2_a21
A. V. Logachov; A. A. Mogulskii. The moderate deviations principle for the trajectories of compound renewal processes on the half -- line. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1189-1200. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a21/

[1] A.A. Borovkov, Compound renewal processes, M., 2020 | Zbl

[2] A.A. Borovkov, Asymptotic analysis of random walks: light-tailed distributions, Cambridge University Press, Cambridge, 2020 | Zbl

[3] A.V. Logachov, A.A. Mogulskii, “Anscombe-type theorem and moderate deviations for trajectories of a compound renewal process”, J. Math. Sci., New York, 229:1 (2018), 36–50 | DOI | Zbl

[4] F.C. Klebaner, A.V. Logachov, A.A. Mogulskii, “Large deviations for processes on half-line”, Electron. Commun. Probab., 20 (2015), 75, 1–14 | DOI | Zbl

[5] F.C. Klebaner, A.A. Mogulskii, “Large deviations for processes on half-line: random walk and compound Poisson”, Sib. Électron. Mat. Izv., 16 (2019), 1–20 | DOI | Zbl

[6] F.C. Klebaner, A.V. Logachov, A.A. Mogulskii, “Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line”, Probl. Inf. Transm., 56:1 (2020), 56–72 | DOI | Zbl

[7] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Springer, New York, 1998 | Zbl

[8] J.L. Doob, Stochastic processes, Wiley, New York, 1953 | Zbl

[9] P. Billingsley, Convergence of probability measures, John Wiley and Sons, New York etc, 1968 | Zbl

[10] J. Feng, T. Kurtz, Large deviations for stochastic processes, Mathematical Surveys and Monographs, 131, AMS, Providence, 2006 | DOI | Zbl

[11] A.D. Wentzell, Limit theorems on large deviations for Markov stochastic processes, Mathematics and Its Applications. Soviet Series, 38, Kluwer, Dordrecht etc., 1990 | Zbl