@article{SEMR_2021_18_2_a15,
author = {A. A. Buturlakin and A. F. Tereshchenko},
title = {The sum of orders of elements in nonabelian groups of odd order},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1698--1704},
year = {2021},
volume = {18},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a15/}
}
TY - JOUR AU - A. A. Buturlakin AU - A. F. Tereshchenko TI - The sum of orders of elements in nonabelian groups of odd order JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1698 EP - 1704 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a15/ LA - en ID - SEMR_2021_18_2_a15 ER -
A. A. Buturlakin; A. F. Tereshchenko. The sum of orders of elements in nonabelian groups of odd order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1698-1704. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a15/
[1] H. Amiri, S.M. Jafarian Amiri, I.M. Isaacs, “Sums of element orders in finite groups”, Commun. Algebra, 37:9 (2009), 2978–2980 | DOI | MR | Zbl
[2] M. Tărnăuceanu, “Detecting structural properties of finite groups by the sum of element orders”, Isr. J. Math., 238:2 (2020), 629–637 | DOI | MR | Zbl
[3] M. Herzog, P. Longobardi, M. Maj, “The second maximal groups with respect to the sum of element orders”, J. Pure Appl. Algebra, 225:3 (2021), 106531 | DOI | MR | Zbl
[4] M. Herzog, P. Longobardi, M. Maj, “An exact upper bound for sums of element orders in non-cyclic finite groups”, J. Pure Appl. Algebra, 222:7 (2018), 1628–1642 | DOI | MR | Zbl
[5] R. Shen, G. Chen, C. Wu, “On groups with the second largest value of the sum of element orders”, Commun. Algebra, 43:6 (2015), 2618–2631 | DOI | MR | Zbl
[6] Y. Berkovich, Groups of prime power order, Walter de Gruyter, Berlin, 2008 | MR | Zbl
[7] I.M. Isaacs, Finite group theory, American Mathematical Society, Providence, 2008 | MR | Zbl