The sum of orders of elements in nonabelian groups of odd order
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1698-1704.

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote by $\psi(G)$ the sum of the orders of the elements of a finite group $G$. We obtain an exact upper bound for $\psi(G)$ on the set of nonabelian groups of given odd order $n$ in terms of the minimal prime divisor of $n$. We also describe the finite groups on which this bound is achieved.
Keywords: orders of elements, solvable groups.
@article{SEMR_2021_18_2_a15,
     author = {A. A. Buturlakin and A. F. Tereshchenko},
     title = {The sum of orders of elements in nonabelian groups of odd order},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1698--1704},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a15/}
}
TY  - JOUR
AU  - A. A. Buturlakin
AU  - A. F. Tereshchenko
TI  - The sum of orders of elements in nonabelian groups of odd order
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1698
EP  - 1704
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a15/
LA  - en
ID  - SEMR_2021_18_2_a15
ER  - 
%0 Journal Article
%A A. A. Buturlakin
%A A. F. Tereshchenko
%T The sum of orders of elements in nonabelian groups of odd order
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1698-1704
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a15/
%G en
%F SEMR_2021_18_2_a15
A. A. Buturlakin; A. F. Tereshchenko. The sum of orders of elements in nonabelian groups of odd order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1698-1704. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a15/

[1] H. Amiri, S.M. Jafarian Amiri, I.M. Isaacs, “Sums of element orders in finite groups”, Commun. Algebra, 37:9 (2009), 2978–2980 | DOI | MR | Zbl

[2] M. Tărnăuceanu, “Detecting structural properties of finite groups by the sum of element orders”, Isr. J. Math., 238:2 (2020), 629–637 | DOI | MR | Zbl

[3] M. Herzog, P. Longobardi, M. Maj, “The second maximal groups with respect to the sum of element orders”, J. Pure Appl. Algebra, 225:3 (2021), 106531 | DOI | MR | Zbl

[4] M. Herzog, P. Longobardi, M. Maj, “An exact upper bound for sums of element orders in non-cyclic finite groups”, J. Pure Appl. Algebra, 222:7 (2018), 1628–1642 | DOI | MR | Zbl

[5] R. Shen, G. Chen, C. Wu, “On groups with the second largest value of the sum of element orders”, Commun. Algebra, 43:6 (2015), 2618–2631 | DOI | MR | Zbl

[6] Y. Berkovich, Groups of prime power order, Walter de Gruyter, Berlin, 2008 | MR | Zbl

[7] I.M. Isaacs, Finite group theory, American Mathematical Society, Providence, 2008 | MR | Zbl