On compressed zero-divisor graphs of finite commutative local rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1531-1555.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the compressed zero-divisor graphs of a commutative finite local rings $R$ of characteristic $p$ with Jacobson radical $J$ such that $J^4=(0)$, $F=R/J\cong GF(p^r)$ and ${\dim_F J/J^2=2}$, ${\dim_F J^2/J^3=2}$, ${\dim_F J^3=1}$ or ${\dim_F J/J^2=3}$, ${\dim_F J^2/J^3=1}$, ${\dim_F J^3=1}$.
Keywords: finite ring, local ring, zero-divisor graph.
@article{SEMR_2021_18_2_a12,
     author = {E. V. Zhuravlev and O. A. Filina},
     title = {On compressed zero-divisor graphs of finite commutative local rings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1531--1555},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a12/}
}
TY  - JOUR
AU  - E. V. Zhuravlev
AU  - O. A. Filina
TI  - On compressed zero-divisor graphs of finite commutative local rings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1531
EP  - 1555
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a12/
LA  - en
ID  - SEMR_2021_18_2_a12
ER  - 
%0 Journal Article
%A E. V. Zhuravlev
%A O. A. Filina
%T On compressed zero-divisor graphs of finite commutative local rings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1531-1555
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a12/
%G en
%F SEMR_2021_18_2_a12
E. V. Zhuravlev; O. A. Filina. On compressed zero-divisor graphs of finite commutative local rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1531-1555. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a12/

[1] I. Beck, “Coloring of commutative rings”, J. Algebra, 116:1 (1988), 208–226 | DOI | MR | Zbl

[2] D.F. Anderson, P.S. Livingston, “The zero-divizor graph of a commutative ring”, J. Algebra, 217:2 (1999), 434–447 | DOI | MR | Zbl

[3] N. Bloomfield, C. Wickham, “Local rings with genus two zero divisor graph”, Commun. Algebra, 38:8 (2010), 2965–2980 | DOI | MR | Zbl

[4] N. Bloomfield, “The zero divisor graphs of commutative local rings of order $p^4$ and $p^5$”, Commun. Algebra, 41:2 (2013), 765–775 | DOI | MR | Zbl

[5] B.R. McDonald, Finite rings with identity, Decker, New York, 1974 | MR | Zbl

[6] R. Raghavendran, “Finite associative rings”, Compos. Math., 21 (1969), 195–229 | MR | Zbl

[7] C.J. Chikunji, “Unit groups of cube radical zero commutative completely primary finite rings”, Int. J. Math. Math. Sci., 2005:4 (2005), 579–592 | DOI | MR | Zbl

[8] S. Akbari, H.R. Maimani, S. Yassemi, “When zero-divisor graph is planar or a complete $r$-partite graph”, J. Algebra, 270:1 (2003), 169–180 | DOI | MR | Zbl

[9] R. Belshoff, J. Chapman, “Planar zero-divisor graphs”, J. Algebra, 316:1 (2007), 471–480 | DOI | MR | Zbl

[10] A.S. Kuz'mina, Yu.N. Maltsev, “Nilpotent finite rings with planar zero-divisor graphs”, Asian-Eur. J. Math., 1:4 (2008), 565–574 | DOI | MR | Zbl

[11] A.S. Kuzmina, “Description of finite nonnilpotent rings with planar zero-divisor graphs”, Discrete Math. Appl., 19:6 (2009), 601–617 | DOI | MR | Zbl

[12] A.S. Kuzmina, “Finite rings with Eulerian zero-divisor graphs”, J. Algebra Appl., 11:3 (2012), 1250055 | DOI | MR | Zbl

[13] S. Akbari, A. Mohammadian, “Zero-divisor graphs of non-commutative rings”, J. Algebra, 296:2 (2006), 462–479 | DOI | MR | Zbl

[14] A.S. Kuzmina, “On some properties of ring varieties in which finite rings are uniquely determined by their zero-divisor graphs”, Sib. Èlektron. Mat. Izv., 8 (2011), 179–190 | MR | Zbl

[15] E.V. Zhuravlev, A.S. Kuz'mina, Yu.N. Mal'tsev, “The description of varieties of rings whose finite rings are uniquely determined by their zero-divisor graphs”, Russ. Math., 57:6 (2013), 10–20 | DOI | MR | Zbl

[16] E.V. Zhuravlev, A.S. Monastyreva, “Compressed zero-divisor graphs of finite associative rings”, Sib. Math. J., 61:1 (2020), 76–84 | DOI | MR | Zbl

[17] A. Tadayyonfar, A.R. Ashrafi, “The zero divisor graphs of finite rings of cubefree order”, Filomat, 29:8 (2015), 1715–1720 | DOI | MR | Zbl

[18] B. Sorbas, G.D. Williams, “Rings of order $p^5$. I: Nonlocal rings”, J. Algebra, 231:2 (2000), 677–690 | DOI | MR | Zbl

[19] B. Sorbas, G.D. Williams, “Rings of order $p^5$. II: Local rings”, J. Algebra, 231:2 (2000), 691–704 | DOI | MR | Zbl

[20] V.G. Antipkin, V.P. Elizarov, “Rings of order $p^3$”, Sib. Math. J., 23 (1983), 457–464 | DOI | MR | Zbl

[21] B. Fine, “Classification of finite rings of order $p^2$”, Math. Mag., 66:4 (1993), 248–252 | DOI | MR | Zbl

[22] E.V. Zhuravlev, “Local rings of order $p^6$ with 4-nilpotent Jacobson radical”, Sib. Èlektron. Mat. Izv., 3 (2006), 15–59 | MR | Zbl

[23] E.V. Zhuravlev, “On the classification of finite commutative local rings”, Sib. Èlektron. Mat. Izv., 12 (2015), 625–638 | MR | Zbl

[24] E.V. Zhuravlev, A.S. Monastyreva, “On zero divisor graphs of finite commutative local rings”, Sib. Èlektron. Mat. Izv., 16 (2019), 465–480 | DOI | MR | Zbl