On compressed zero-divisor graphs of finite commutative local rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1531-1555
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the compressed zero-divisor graphs of a commutative finite local rings $R$ of characteristic $p$ with Jacobson radical $J$ such that $J^4=(0)$, $F=R/J\cong GF(p^r)$ and ${\dim_F J/J^2=2}$, ${\dim_F J^2/J^3=2}$, ${\dim_F J^3=1}$ or ${\dim_F J/J^2=3}$, ${\dim_F J^2/J^3=1}$, ${\dim_F J^3=1}$.
Keywords:
finite ring, local ring, zero-divisor graph.
@article{SEMR_2021_18_2_a12,
author = {E. V. Zhuravlev and O. A. Filina},
title = {On compressed zero-divisor graphs of finite commutative local rings},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1531--1555},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a12/}
}
TY - JOUR AU - E. V. Zhuravlev AU - O. A. Filina TI - On compressed zero-divisor graphs of finite commutative local rings JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1531 EP - 1555 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a12/ LA - en ID - SEMR_2021_18_2_a12 ER -
E. V. Zhuravlev; O. A. Filina. On compressed zero-divisor graphs of finite commutative local rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1531-1555. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a12/