On compressed zero-divisor graphs of finite commutative local rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1531-1555

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the compressed zero-divisor graphs of a commutative finite local rings $R$ of characteristic $p$ with Jacobson radical $J$ such that $J^4=(0)$, $F=R/J\cong GF(p^r)$ and ${\dim_F J/J^2=2}$, ${\dim_F J^2/J^3=2}$, ${\dim_F J^3=1}$ or ${\dim_F J/J^2=3}$, ${\dim_F J^2/J^3=1}$, ${\dim_F J^3=1}$.
Keywords: finite ring, local ring, zero-divisor graph.
@article{SEMR_2021_18_2_a12,
     author = {E. V. Zhuravlev and O. A. Filina},
     title = {On compressed zero-divisor graphs of finite commutative local rings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1531--1555},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a12/}
}
TY  - JOUR
AU  - E. V. Zhuravlev
AU  - O. A. Filina
TI  - On compressed zero-divisor graphs of finite commutative local rings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1531
EP  - 1555
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a12/
LA  - en
ID  - SEMR_2021_18_2_a12
ER  - 
%0 Journal Article
%A E. V. Zhuravlev
%A O. A. Filina
%T On compressed zero-divisor graphs of finite commutative local rings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1531-1555
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a12/
%G en
%F SEMR_2021_18_2_a12
E. V. Zhuravlev; O. A. Filina. On compressed zero-divisor graphs of finite commutative local rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1531-1555. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a12/