On closure of configurations in freely generated projective planes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 358-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{F}$ be an arbitrary freely generated projective plane. Based on Shirshov's combinatorial method, we introduce the notion of a reduced configuration in $\mathcal{F}$. We prove that for every subplane $\mathcal{P}$ generated in $\mathcal{F}$ by some configuration $\mathcal{B}$, there is a reduced configuration $\mathcal{B}'$ such that $\mathcal{P}$ is freely generated by $\mathcal{B}'$.
Keywords: projective plane, incidence, freely generated projective plane, nonassociative word, regular word.
Mots-clés : configuration
@article{SEMR_2021_18_1_a5,
     author = {N. T. Kogabaev},
     title = {On closure of configurations in freely generated projective planes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {358--368},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a5/}
}
TY  - JOUR
AU  - N. T. Kogabaev
TI  - On closure of configurations in freely generated projective planes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 358
EP  - 368
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a5/
LA  - en
ID  - SEMR_2021_18_1_a5
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%T On closure of configurations in freely generated projective planes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 358-368
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a5/
%G en
%F SEMR_2021_18_1_a5
N. T. Kogabaev. On closure of configurations in freely generated projective planes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 1, pp. 358-368. http://geodesic.mathdoc.fr/item/SEMR_2021_18_1_a5/

[1] M.J. Hall, “Projective planes”, Trans. Am. Math. Soc., 54:2 (1943), 229–277 | DOI | MR | Zbl

[2] A.I. Shirshov, A.A. Nikitin, “Theory of projective planes”, Algebra Logic, 20:3 (1982), 220–239 | DOI | MR | Zbl

[3] A.A. Nikitin, “Homomorphisms of freely generated projective planes”, Algebra Logic, 20:4 (1982), 277–282 | DOI | MR | Zbl

[4] A.A. Nikitin, “On freely generated projective planes”, Algebra Logic, 22:1 (1983), 45–47 | DOI | MR | Zbl

[5] V.V. Vdovin, “Simple projective planes”, Arch. Math., 47:5 (1986), 469–480 | DOI | MR

[6] V.V. Vdovin, “Homomorphisms of freely generated projective planes”, Commun. Algebra, 16:11 (1988), 2209–2230 | DOI | MR | Zbl

[7] V.V. Vdovin, “Homomorphisms and algorithmic problems in projective planes”, Sib. Math. J., 32:6 (1991), 919–923 | DOI | MR | Zbl

[8] D.R. Hughes, F.C. Piper, Projective planes, Graduate Texts in Mathematics, 6, Springer-Verlag, New York etc., 1973 | MR | Zbl